

Andrea Giussani

“	This book gives the fundamental
principles for developing Machine

	 Learning applications with Python”.
				 Massimo Natale, Lead Data Scientist at Generali Italic

Andrea Giussani is an Academic Fellow in Computer Science at Bocconi University.

He holds a PhD in Statistics, and he has published in several peer-reviewed journals,

including Journal of Applied Statistics and Statistics and Probability Letters.

A
PPLIE

D
 M

A
C

H
IN

E
 LE

A
R

N
IN

G
 W

IT
H

 PY
T

H
O

N

A
nd

rea G
iu

ssan
i

Mybook is the gateway to access accompaying resources
(both text and multimedia), the BookRoom, the EasyBook
app and your purchased books.

http//mybook.egeaonline.it
ISBN 978-88-99902-65-0

www.bupbooks.com

APPLIED MACHINE
LEARNING
WITH PYTHON

Euro 18,00

APPLIED MACHINE
LEARNING
WITH PYTHON

Andrea Giussani

Copyright © 2019, EGEA S.p.A.
Via Salasco, 5 - 20136 Milano
Tel. 02/5836.5751 – Fax 02/5836.5753
egea.edizioni@unibocconi.it - www.egeaonline.it

All rights reserved, including but not limited to translation, total or partial adaptation, reproduction,
and communication to the public by any means on any media (including microfilms, films,
photocopies, electronic or digital media), as well as electronic information storage and retrieval
systems. For more information or permission to use material from this text, see the website
www.egeaeditore.it

Given the characteristics of Internet, the publisher is not responsible for any changes of
address and contents of the websites mentioned.

First international edition: March 2020

ISBN Domestic Edition 978-88-99902-65-0
ISBN International Edition 978-88-31322-04-1
ISBN Pdf International Edition 978-88-31322-14-0

Print: Logo s.r.l., Borgoricco (Padua)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page v — #5
�

�

�

�

�

�

Contents

List of Figures ix

Preface xiii

1 Introduction to Machine Learning 1
1.1 A simple supervised model: Nearest Neighbor 2

1.1.1 Tuning Hyperparameters with Cross-Validation 9
1.2 Preprocessing . 14

1.2.1 Scaling Data . 15
1.2.2 Forcing Data to be Gaussian: an Introduction to Power Trans-

formations . 19
1.2.3 Dealing with Categorical Variables 21
1.2.4 Handling with Missing Values 24

1.3 Methods for Dealing with Imbalanced Data 26
1.3.1 Random Oversampling of the Majority Class 28
1.3.2 Random Undersampling of the Majority Class 29
1.3.3 Oversampling using Synthetic Data: SMOTE 30

1.4 Reducing Dimensionality: Principal Component Analysis 31
1.4.1 PCA as dimensionality reduction 32
1.4.2 Feature extraction . 36
1.4.3 Nonlinear Manifold Algorithm: t-SNE 37

2 Linear Models for Machine Learning 41
2.1 Linear Regression . 42
2.2 Shrinkage Methods . 44

2.2.1 Ridge Regression . 44
2.2.2 Lasso Regression . 49
2.2.3 Elastic Net . 51

v

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page vi — #6
�

�

�

�

�

�

vi CONTENTS

2.3 Robust Regression . 52

2.3.1 Huber Regression . 53

2.3.2 RANSAC . 56

2.4 Logistic Regression . 58

2.4.1 Why Logistic Regression is Linear? 59

2.4.2 Logistic Regression Predictions (Raw Model Output) vs Prob-
abilities (Sigmoid Output) . 60

2.4.3 Logistic Regression in Python . 61

2.4.4 Model Performance Evaluation 62

2.4.5 Regularization . 66

2.5 Linear Support Vector Machine . 68

2.6 Beyond Linearity: Kernelized Models 73

2.6.1 Into the Hood of the Kernel Trick 76

2.6.2 Practical Classification Example: Face Recognition 77

3 Beyond Linearity: Ensemble Methods for ML 83
3.1 Introduction . 83

3.2 Ensemble Methods . 84

3.2.1 Boostrap Aggregation . 88

3.2.2 Out-of-Bag Estimation . 90

3.3 Random Forests . 91

3.3.1 Random Forests Classifier . 91

3.3.2 Random Forests Regressor . 94

3.4 Boosting Methods . 95

3.4.1 AdaBoost . 95

3.4.2 Gradient Boosting . 96

3.4.3 Extreme Gradient Boosting (XGBoost) 99

3.4.4 CatBoost . 106

4 An Introduction to Modern ML Techniques 115
4.1 Introduction to Natural language Processing 115

4.1.1 Preprocessing with Text Data . 116

4.1.2 Numerical Representation of Documents: the Bag-of-Words . . 121

4.1.3 Practical Example: Sentiment Analysis with IMDb Reviews
Dataset . 124

4.1.4 Term Frequency-Inverse Document Frequency 126

4.1.5 Bag-of-Words with More Than One Word (n-Grams) 127

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page vii — #7
�

�

�

�

�

�

CONTENTS vii

4.1.6 Beyond Bag-of-words: Word Embeddings 132
4.2 Introduction to Deep Learning . 140

4.2.1 Dealing with Complex Data into a Neural Network 143
4.2.2 Multiclass classification . 147

Appendices 151

A A crash course in Python 153
A.1 Building Blocks in Python . 153

A.1.1 Variables . 153
A.1.2 Methods . 155

A.2 Data Structure in Python . 156
A.2.1 List and Tuples . 156
A.2.2 Sets . 158
A.2.3 Dictionaries . 158

A.3 Loops in Python . 159
A.3.1 The For Loop . 159
A.3.2 The While Loop . 160

A.4 Advanced Data Structure in Python . 161
A.4.1 List comprehensions . 161
A.4.2 Lambda Functions . 163

A.5 Advanced Concepts on Functions . 164
A.5.1 The magic of Wildcards into Function’s arguments 164
A.5.2 Local vs Global Scope in Functions 168

A.6 Introduction to Object-Oriented Programming 169
A.6.1 Objects, Classes and Attributes 170
A.6.2 Subclasses and Inheritance . 172

B Mathematics behind the skip-gram model 175

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page viii — #8
�

�

�

�

�

�

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page ix — #9
�

�

�

�

�

�

List of Figures

1.1 Figure 1.1: Training observations, labelled by the target variable. 4

1.2 Figure 1.2: Classification of the test points based on a simple Nearest
Neighbour. 5

1.3 Figure 1.3: Confusion Matrix on the test Set 6

1.4 Figure 1.4: Sensitivity analysis on the accuracy for different number
of Neighbors. 8

1.5 Figure 1.5: Representation of a 5-folds cross-validation. This was
taken from the . 11

1.6 Figure 1.6: Principal Component Analysis: Scatter Plot of the Original
Data . 33

1.7 Figure 1.7: Transformation and Dimensionality reduction on a simple
2-dim feature space. 34

1.8 Figure 1.8: Transformation of the two Principal Components after
Scaling. 34

1.9 Figure 1.9: Impact of each feature on the first two Principal Components. 35

1.10 Figure 1.10: Application of t-SNE on the digits dataset. 40

2.1 Figure 2.1: Shrinkage effect on the Regression Coefficients in the
Boston House Dataset under a L2-penalty model. 47

2.2 Figure 2.2: Mean Training vs Mean Test score under the Ridge Model
for different value of α, with corresponding uncertanty. We see that
the uncertanty drammatically reduce its effect after certain values of α,
and that the train and test looks very similar, though the train always
performs better than the test set, for those values. 49

2.3 Figure 2.3: Shrinkage effect on the Regression Coefficients using a
Lasso Penalization. 50

2.4 Figure 2.4: Feature Importance in Lasso regression. 51

ix

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page x — #10
�

�

�

�

�

�

x LIST OF FIGURES

2.5 Figure 2.5 Empirical rule in action: outliers notably are identified as
extreme events in this distribution. 53

2.6 Figure 2.6: Different behaviour of the Squared vs Huber Loss for in-
creasing values in the model prediction residuals. 55

2.7 Figure 2.7: Fitting of a standard OLS and Huber Regression in the
presence of outliers. 56

2.8 Figure 2.8: Huber vs RANSAC Regression (under the OLS baseline). . 58

2.9 Figure 2.9: Theoretical Logistic Function, with threshold set to 0.5 . . . 60

2.10 Figure 2.10: Confusion Matrix for the Diabetes Dataset on the Test set. 64

2.11 Figure 2.11: Precision-Recall Curve on the Diabetes Dataset. 65

2.12 Figure 2.12: The Receiver operating characteristic (ROC) Curve 66

2.13 Figure 2.13: Plots of common Classification Loss Functions: on the y-
axis, we have the loss, whereas on the x-axis we have the raw-model
output. 69

2.14 Figure 2.14: Scatter Plot of the toy data used for the illustration of the
SVM. 71

2.15 Figure 2.15: Identification of the Decision Boundaries and Support
Vectors. 72

2.16 Figure 2.16: Scatter Plot of a overlapping, two-classes, dataset. 73

2.17 Figure 2.17: Effect on the regularization on the margins. 74

2.18 Figure 2.18: A Linear Hyperplane with non-linear data is not feasible. . 74

2.19 Figure 2.19: Fitting a SVM to non-linear data using the Kernel Trick
produces non-linear decision boundaries. 76

2.20 Figure 2.20: Predicted sample names. Incorrect labels are shown in red. 79

2.21 Figure 2.21: Model Performance on the Face Dataset using PCA and
SVM together. 81

3.1 Figure 3.1: Feature (global) importance obtained by fitting a random
Forest Classifier on the Heart Disease Dataset. 92

3.2 Figure 3.2: The role of pruning in control overfitting. 93

3.3 Figure 3.3: Feature global importance in Gradient Boosting Classifier. . 98

3.4 Figure 3.4: Raw SHAP Score for the fourth observation, with the (neg-
ative and positive) effect of some features explained. Note that in
red we have features that move positively away from the baseline,
whereas in blue the ones which affect negatively this pattern. 101

3.5 Figure 3.5: Feature global importance as the average of the SHAP
value magnitudes across the dataset. 104

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page xi — #11
�

�

�

�

�

�

LIST OF FIGURES xi

3.6 Figure 3.6: Feature Importance for all the dataset units. 105
3.7 Figure 3.7: Dependence Plot for the feature MaxHR. 106
3.8 Figure 3.8: Exploratory Data Analysis on the Titanic Dataset. 108
3.9 Figure 3.9: Global Feature Importance on the Training Titanic Dataset

on fitting the catboost Classifier. 111
3.10 Figure 3.10: Confusion Matrix on the Titanic Test Set. 112

4.1 Figure 4.1: Clusters of selected words, based on their similarity re-
trived by the Word2Vec model. 137

4.2 Figure 4.2: Representation of a Neural Network Architecture with two
hidden layers. 140

4.3 Figure 4.3: A linear separable dataset for Classification. 142
4.4 Figure 4.4: Loss vs Accuracy in Fitting a one-layer NN to a linear sep-

arable dataset. 144
4.5 Figure 4.5: Decision Boundaries after fitting a one-layer NN on a linear

separable dataset. 144
4.6 Figure 4.6: Fitting a Logistic Regression on such data would lead to an

inconsistent estimator. 145
4.7 Figure 4.7: Loss vs Accuracy by a one-layer neural network (for dif-

ferent epochs) on a non-linear dataset 146
4.8 Figure 4.8: Decision boundaries after having fitted a dense neural net-

work with three layers. 147
4.9 Figure 4.9: Scatter Plot of data concerning a three-class classification

problem. 148
4.10 Figure 4.10: Decision Boundaries on a three-class problem produced

by a dense neural network. 150
4.11 Figure 4.11: Confusion Matrix for a three-class classification problem

produced by a dense neural network. 150

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page xii — #12
�

�

�

�

�

�

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page xiii — #13
�

�

�

�

�

�

Preface

. . . the objective of statistical methods is the reduction of data. A quan-
tity of data...is to be replaced by relatively few quantities which shall
adequately represent...the relevant information contained in the original
data. Since the number of independent facts supplied in the data is usu-
ally far greater than the number of facts sought, much of the information
supplied by an actual sample is irrelevant. It is the object of the statistical
process employed in the reduction of data to exclude this irrelevant in-
formation, and to isolate the whole of the relevant information contained
in the data.

R.A. Fisher (1922)

These words by one of the greatest Statistician, Sir R.A. Fisher, speak by themselves.
I would say, this sentence contains the essence of machine learning, although many
things have changed from the last century. For instance, nowadays we typically face
datasets where the number of observations is far greater than the set of distinct fea-
tures. At those times, probably the biggest dataset on which Fisher was working
was the Iris dataset, but nowadays we deal with datasets of millions of examples,
and therefore all classical theoretical results would, trivially, be satisfied (e.g. the
Central Limit Theorem is one of those). On the other hand, in many modern ap-
plications, we still have problems of dimensionality, and therefore those words are
essentially still very important in the Machine Learning community. With different
words, Andrew Ng, Computer Scientist at Stanford University, has recently came up
with this sentence:

Coming up with features is difficult, time-consuming, requires expert
knowledge. Applied machine learning is basically feature engineering.

In my personal interpretation, featuring engineering is the modern concept of
dimensionality reduction, because both of them aim at producing feature extraction

xiii

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page xiv — #14
�

�

�

�

�

�

xiv PREFACE

to improve the performances of the model. But honestly it would be very reductive
to comprise the term Machine Learning to dimensionality reduction.
Machine Learning has gained a remarkable popularity in the last decade, not just
because of the massive amount of available data, which is produced by ourself in
everyday simple actions, but also because there is a wide consensus that learning
from data leads to take better decisions and generate a better understanding of the
phenomenon under investigation.
In its very general terms, Machine Learning (ML) can be understood as the set
of algorithms and mathematical models that allow a system to autonomously
perform a specific task, providing model-related scores and measures to evaluate
its performances. It is sometimes confused with predictive (numerical) analytics,
which is indeed part of ML, but more related to statistical learning. The range of
applications of Machine Learning methods is vast and heterogeneous, from image
recognition to topic detection in text analysis, from predicting whether a patient
will suffer from breast cancer to predicting the price of a stock in three months from
now.
The main objective of Machine Learning consists of predicting an outcome based on
a set of features. The model is trained on a set of data, in which the target variable
is available, and a predictor (or learner) is obtained. This learner is then used to
predict the outcome on new data, that are not available at the time of training, and
typically a good predictor is the one that accurately predicts the target variable.
This pipeline describes a discriminative supervised learning method, where we aim
to predict a (continuous) target variable y based on some features X. In this book,
we will focus on Shrinkage estimators, Support Vector Machine algorithms, Ensemble
methods and their applications to structured and unstructured data. However, in
many applications, we could be just interested in finding some relationship between
the target and the features: this is what unsupervised learning methods do. Although
we will give more attention to supervised techniques, a great deal of attention will
be given to techniques for dimensionality reduction, such as the Principal Component
Analysis, which is a method that basically rotates the dataset in such a way that the
rotated features are statistically uncorrelated.
The aim of this book is to introduce the reader to the main modern algorithms,
employed by practitioners, to tackle Machine Learning problems, ranging from
linear models to modern methods that easily deal with non-linear relationships.
The book has been thought for a broad, not strictly technical audience: on the one
hand, the book was proposed for Bocconi Unviersity students, who actually come
from applied sciences, and most likely want to learn modern ML techniques to

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page xv — #15
�

�

�

�

�

�

PREFACE xv

develop modern applications into Economics, Finance, Social and Political Sciences;
on the other hand, I strongly believe this book can be a very good pocket-friend
for all who wants to use machine learning in their data science and analytics tasks.
Indeed, the book is proposed as a sort of cookbook, where each statistical model
is presented, and the corresponding code section is provided to consistently apply
those concepts to real problem.
I have intentionally avoided mathematics in most places because I believe it is
(sometimes) a good distractor from the main objective of this manuscript, that is to
empower the beginner learner with machine learning methods. Similarly, in many
parts of this book, we have favored exposition over succinctness. I am aware of
the fact that most of the code presented here could be tightened up, but that was
rationally choosen to illustrate the methodologies to a broad target audience.
Hence, this manuscript was designed and written to be primarly used for prac-
titioners, without the need of going into the math of the algorithms, although I
strongly encourange to deepen those concepts with the reading of technical books
and specific papers. If you are interested in the mathematics behind the proposed
algorithms, there exists many books concerning technical aspects, which are men-
tioned throughout this book.
The key fact about this book is that it guides the reader into different methods,
ranging from Bagging to the modern XGBoost, which is probably the first-best
choice for any practitioner in machine learning. This is actually a strong point of
this book: to the best of my knowledge, no book has been written giving particular
attention to recent ensemble methods, such as XGBoost or CatBoost.
Python is the high-level language on which the analysis are carried out: this is indeed
the modern language of applied Machine Learning, and notably modern softwares
and techniques are developed in this language. Note that Python is an open-source
software, and can be downloaded at the following link: https://www.python.org. I
would say, it democratizes the coding era by allowing anyone to produce, promote
and mantain a software easily and efficiently. Furthermore, I believe that once
learned, it will be much more easier to follow the machine learning community on
its developments and improvements.
The book is structured as follows: In Chapter 1, we will describe the standard
pipeline that a machine learning algorithm follows: we will cover standard prepro-
cessing and more advanced techniques, such as PCA for dimensionality reduction,
and try to understand the fundamental relationship between bias and variance in
ML. All the techniques are shown with practical examples. In Chapter 2, the reader
will be introduced to a crucial concept in ML, which is the one of shrinkage. This

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page xvi — #16
�

�

�

�

�

�

xvi PREFACE

is very useful when we have to deal with many features, such as in genetics, and
techniques such as Ridge and Lasso are shown. Furthermore, we will distinguish
between classification and regression techniques, introducing firstly the Logistic
Regression model and then the Support Vector Machine, which are two classifiers
employed when data is linearly separable. A great deal of attention will also be
given to non-linear SVM.
In Chapter 3 we will cover one of the the most popular ML techniques, that is
ensemble methods, ranging from Random Forest to Gradient Boosting, with different
applications. We will cover the XGBoost algorithm, which is the holy grail for any
Machine Learner, and a great discussion is also given to SHAP values, which are a
great tool to explain any model outputs to a non-technical audience. In Chapter 4
we will speak about two of the main areas where ML can be further investigated:
Natural Language Processing and Deep Learning. Both are very hot topics, and
the community is continuously working hard to improve the available models. We
will just introduce those topics, so I strongly suggest the interest reader to deepen
his knowledge with the given references. Since this book is aimed at reaching the
broadest audience, I have also added in Appendix A a crash course in Python: this
is aimed at not just covering the basics, since it will also introduce the reader to more
broad concepts, that necessarily one has to deal with when working with machine
learning models, such as Object-Oriented Programming.
Note that this book comes with an online version available at
https://mybook.egeaonline.it/login. The online version cannot be downloaded,
but it is a colour version to promote code readability. To facilitate the use of
the proposed methods, and to improve the readability, I decided to create a
book-specific library, called egeaML, which is publicly available on GitHub at
https://github.com/andreagiussani/Applied_Machine_Learning_with_Python.
Please follow the instructions available in the GitHub repository to install it. Please,
do note that the user can directly install it in any notebook environment, such as
jupyter or colab, by simply typing and running the following snippet code:

!pip install git+https://github.com/andreagiussani/Applied_Machine_Learning_with_Python.git

The ! operator tells the notebook this is not a Python code, but a command
line script. The datasets used within the book have been made easily accessible
within the repository. Furthermore, the Git repository will be updated periodically
with extra material and new notebooks, so I strongly suggest the reader to check it
frequently.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page xvii — #17
�

�

�

�

�

�

PREFACE xvii

Acknowledgments

I would like to thank many people who have helped me in writing this book.
Most of them has given support and motivation to continue this project, some of
them has given instead interesting insights and suggestions, and this project would
never have seen the conclusion without the help of each of them. Among many, I
would like to thank Alberto Clerici, who was the first one extremely interested in
this project, and who helped me in setting up the final version of this book. I am
also grateful to Marco Bonetti, whose interest for statistical learning methods has
greatly helped me to improve myself daily, and this has definitely ameliorated the
manuscript. I would also thank Egea for having given to me the possibility to write
this manuscript with extreme flexibility, and also for the support on the formulation
and preparation of this book. Finally, I am also grateful to many colleagues and
friends, with who I have discussed this project and gave to me important insights:
among them, I would like to thank Alberto Arrigoni, with who I have had nice chats
on this fascinating topic, and Giorgio Conte, who has helped me in structuring the
GitHub project.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page xviii — #18
�

�

�

�

�

�

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 1 — #19
�

�

�

�

�

�

Chapter 1

Introduction to Machine
Learning

Generally speaking, when we deal with classical machine learning problems, we
typically distinguish between supervised and unsupervised learning methods. In su-
pervised learning, we have a sequence of independent and identical distributed ex-
amples (xi, yi) ∼ p(x, y), where xi ∈ Rp describes a vector of features summarizing
the available data, and yi ∈ R is the target variable, that is the dependent variable
of our model. The objective of supervised learning is to find a function f (·) so that
f (xi) = yi, that is we need to find a function that approximate the distribution well
on the training set but it also generalizes to new, unseen samples that are drawn from
the same distribution. This is the real objective of supervised learning methods:
based on a labelled dataset, you would like to classify a new data point that comes
from the same distribution p(x, y).
On the contrary, unsupervised methods find applications to dataset where the target
is either missing or has not been labelled. Such techniques are used to search for
common patterns within the available data, since they are characterized only by a
vector of input data. Note that unsupervised methods are widely used in many ap-
plications: from clustering to topic detection in Natural Language Processing and di-
mensionality reduction, which is a very wide family of techniques that in this book
will be covered in its essential aspects: just to frame the problem, it maps a set of
high dimensional input instances into a lower dimensional space, while preserving
certain properties of the dataset. Nowadays, dimensionality reduction techniques
are also used in many scientifics fields, such as genetics or computer science, where

1

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 2 — #20
�

�

�

�

�

�

2 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

datasets are characterized by a large amount of features, so that we can reduce the
dimensionality of the problem while retaining the intrinsic variability of the model.

1.1 A simple supervised model: Nearest Neighbor

Let’s introduce the main machine learning modeling pipeline with a simple algo-
rithm: the so-called Nearest Neighbors . We will illustrate this algorithm with a clas-
sification task, on a 2-dimensional vector of features, but please do note that it can
also be used for classical regression tasks. Along this book, we will mainly use scikit-
learn. The scikit project started in 2011 (see Pedregosa et al. (2011) for further refer-
ences), and it is nowadays the one of the main Python open source platform for
machine learning. In the last few years, Tensorflow, developed by Google in 2015
(see Abadi et al. (2015) for details) has gained a remarkable popularity, especially in
the Deep Learning community, and is nowadays extensively used to perform ML
projects and pipelines.
As a fisrt task, we import the necessary libraries and modules that will be used in
this Chapter.

In [1]: from egeaML import *

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_matrix

from sklearn.preprocessing import scale

import pickle

Using TensorFlow backend.

In [2]: import warnings

warnings.filterwarnings('ignore')

We import and read the data, which is available in the GitHub repository, as follows:

In [3]: reader = DataIngestion(df='data_intro.csv', col_target='male')

data = reader.load_data()

X = reader.features()

y = reader.target()

Note that the data have been read using the egeaML specific class DataIngestion,
which basically performs the following steps:

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 3 — #21
�

�

�

�

�

�

1.1. A SIMPLE SUPERVISED MODEL: NEAREST NEIGHBOR 3

1. It reads the data from a .csv file;

2. It split the data into features and target, denoted respectively by X and y.

This set of data consists of only two measurments, that is height and weight, and a
target variable, which is the gender of the observed example. Let’s recall the main
objective of supervised learning methods: we want to train a model, on a specified
set of labelled data, and then evaluate its performance on unseen data by comparing
the performance of the predicted labels with the available information, typically ob-
tained retrospectively. To evaluate a ML model, what we typically do is to split our
data into two set, the training and the test set. This has a major advantage: we can
actually train our model on a slice of data, and the rest is then used to evaluate the
performance of the choosen model on a set of data that were not used before. While
the former is used to build and train the classifier, the latter is used as a holdout set
that stands in for future unseen data. This is an important aspect of preprocessing
and can be summarized in a very simple rule: do not use any test example in the
training phase. Hence, test and training must be kept independent from each other.
To do this, we use the scikit-learn method train_test_split from the model_selection
module, which requires the user to specify the percentage of the available data to be
used for the test set.
The following snippet produce a 2-dimensional plot showing the relationship be-
tween height and weight, marked by their corresponding label, which is shown in
the Figure 1.1. This was produced using the egeaML method training_class from the
class classification_plots. It basically performs the following steps:

1. It takes as input the set of features and the target;

2. It splits the available data into training and test set according to the test size
specified as argument;

3. It plots a a 2-dim training set, and each point is labelled by the class it belongs
to.

In [4]: classification_plots.training_class(X,y,test_size=0.3)

This plot shows the relationship between the two-dimensional, real-valued training
dataset, and that there are two classes by which it is possible to split the data. As a
consequence, the objective is to split the dataset by gender given two features, weight
and height. Nearrest Neighbors works in a pretty simple way: it basically solves the
following problem:

f (xi) = yi s.t. argminj||xj − x||

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 4 — #22
�

�

�

�

�

�

4 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

Figure 1.1: Training observations, labelled by the target variable.

that is in order to classify a new data point, we will look, among all the labelled data
point, for the closest one, and assign the same training label to the new data point.
A natural question that might arise is: given a set of data, how do we properly
train a ML model? How can we try to evaluate the generalization performance of
the algorithm we are using? A typical strategy is to split the available dataset into
training and test set. Notably, we typically train our algorithm using 80% of the data,
and the remaining 20% as the test set. As already mentioned, the two datasets should
remain independent, in the sense that none of the examples devoted to the test set
should be used in the training phase. For any machine learning model, we also
expect that the model should (on average) performs as good as the training phase
whenever we evaluate the model on new data. Let’s see how Nearest Neighbors
works in practice, using the standard scikit pipeline.

In [5]: X_train,X_test,y_train,y_test = train_test_split(X,y,

test_size=0.3, random_state=42)

knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X_train,y_train)

y_pred = knn.predict(X_test)

score = knn.score(X_test,y_test)

print("accuracy: {:.4f}".format(score))

Out[5]: accuracy: 0.8571

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 5 — #23
�

�

�

�

�

�

1.1. A SIMPLE SUPERVISED MODEL: NEAREST NEIGHBOR 5

We firstly initialize the class KNeighborsClassifier by specifying the number of neigh-
bors, that is the number of training points we want to make the comparison with the
one in test: if it is set to one, than the comparison is made with the point which is the
closest to the test point. We then fit the classifier on the training set, and then make
predictions on the test, calling the scikit-learn predict method. This methods looks
for the closest point, and assign its label to the new point.
To evaluate the performance of our classifier, we call the scikit-learn score method,
which computes the number of correctly classified samples, and it requires two argu-
ments: the test data and the corresponding labels. We see that our classifier performs
well on approximately 86% of the test samples, which is extremely good for such a
simple model. We now plot the predicted labels, using the egeaML library, highlight-
ing the ones who were uncorrectly classified by our model:

In [6]: classification_plots.plotting_prediction(X_train,X_test,

y_train,y_test,nn=1)

Figure 1.2: Classification of the test points based on a simple Nearest Neighbour.

Remark. In many situation, we train a model with tons of examples. This translates into
a hard worload for the machine, both in terms of RAM and CPU. Training a model does not
come for free, so it is good practice to store the fitted model into a pickle file, so that it can be

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 6 — #24
�

�

�

�

�

�

6 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

called back whenever we like. A possible use of a pickle is to keep track of the fitted model as
soon as a new retraining happens. The following snippet shows how to save the fitted knn
model into a pickle file.

In [7]: pkl_filename = "my_first_ML_model.pkl"

with open(pkl_filename, 'wb') as file:

pickle.dump(knn, file)

Another way of evaluating how good we are doing in the test set is with a confusion
matrix, which diagonal elements represent the true negative (TN) - that is examples
that have been predicted as female and are indeed female - and true positive (TP) -
that is examples who are men and the model predicted them as men -, respectively.
We will investigate different measures of performance in classification tasks in Chap-
ter 2: for the moment, take into account that the model performs well if the number
of TN and TP is maximized. The result is shown in Figure 1.3.

In [8]: classification_plots.confusion_matrix(y_test,y_pred)

Figure 1.3: Confusion Matrix on the test Set

Please, note that since this function is going to be used throughout the book, if you
don’t remember the arguments or their position, you can simply employ the help
functionality, as follows:

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 7 — #25
�

�

�

�

�

�

1.1. A SIMPLE SUPERVISED MODEL: NEAREST NEIGHBOR 7

In [9]: help(classification_plots.confusion_matrix)

Help on function confusion_matrix in module egeaML:

confusion_matrix(y_test, y_pred, cmap, xticklabels=None, yticklabels=None)

This function generates a confusion matrix, which is used as a

summary to evaluate a Classification predictor.

The arguments are:

- y_test: the true labels;

- y_pred: the predicted labels;

- cmap: it is the palette used to color the confusion matrix.

The available options are:

- cmap="YlGnBu"

- cmap="Blues"

- cmap="BuPu"

- cmap="Greens"

Please refer to the notebook available on the book repo

Miscellaneous/setting_CMAP_argument_matplotlib.ipynb

for further details.

- xticklabels: list

description of x-axis label;

- yticklabels: list

description of y-axis label

Note also that if you do not know which colormap to use, you
can check the Miscellaneous material available on GitHub, where the
setting_CMAP_argument_matplotlib.ipynb file is available: tit basically shows
different colormaps that can be used to color your favourite plot.
Another question that might arise is: what happens if we increase the number of
neighbors? The next chunk produces a plot that shows the accuracy of the model
for different values of the hyperparameter n_neighbors: note that a zoom of the first
ten iteration is shown in Figure 1.4.

In [10]:n_neigh = list(range(1,50))

train_scores = []

test_scores = []

for i in n_neigh:

knn = KNeighborsClassifier(n_neighbors=i)

knn.fit(X_train,y_train)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 8 — #26
�

�

�

�

�

�

8 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

train_score = knn.score(X_train,y_train)

train_scores.append(train_score)

test_score = knn.score(X_test,y_test)

test_scores.append(test_score)

df = pd.DataFrame()

df['n_neigh']= n_neigh

df['Training Score']=train_scores

df['Test Score']=test_scores

plt.figure(figsize=(5,5))

plt.plot(df.iloc[:,0], df.iloc[:,1],

label ='Train Performance')

plt.plot(df.iloc[:,0], df.iloc[:,2],

label ='Test Performance')

plt.xlabel('Number of Neighbors', fontsize=16)

plt.ylabel('Accuracy', fontsize=16)

plt.legend()

plt.show()

Figure 1.4: Sensitivity analysis on the accuracy for different number of Neighbors.

It seems a good choice might be n_neighbors equal to three. Obviously, as the num-
ber of Neighbors tend to zero, our model gets too complicated, and hence we poorly
generalize to new data: this is called overfitting. More specifically, overfitting refers
to the situation where a model is not able to well generalize to new, unseen data, and

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 9 — #27
�

�

�

�

�

�

1.1. A SIMPLE SUPERVISED MODEL: NEAREST NEIGHBOR 9

typically we have it when the model perfectly memorizes the whole training set but
does not clearly separates the two classes. This might be induced by the fact we are
retaining all the observed training noise, and therefore it is difficult to generalize to
new data.
Underfitting, instead, refers to the situation where the model is too simple, and it is
not able to extract useful information from the training set. In this case, the accuracy
in both training and test set is similar, and tend to be smaller as the model gets to
simpler.
Generally, in k-Nearest Neighbors, a lower number of neighbors refers to a more
complex model: for regression models, as we will see in Chapter 2, we can prevent
overfitting by regularizing the regression coefficients, whereas with ensemble meth-
ods we typically control it by managing the depth of the tree.

1.1.1 Tuning Hyperparameters with Cross-Validation

We saw that to train a model, we notably split the data into a training and test set.
However, especially in k-Nearest Neighbors (kNN), we have to set a priori the num-
ber of neighbors, which is quite restrictive from a inferential point of view: this
means that the user must know the number of clusters our data will be grouped
by the training algorithm, which is actually unknown at the beginning of the data
analysis.
Hence, what we can do is to train a series of kNN models, and then evaluate each
model performance on the test set. But this has a major limitation: I am picking the
model that best performs on the test set, which is quite restrictive because it does
just depends on the data I have observed. In other words, the test set prediction is
not an unbiased estimate of future performances anymore.
Instead, what we typically do is to use three folds that we split into:

• Training set, which is used for model fitting;

• Validation set, which is used for picking the (best) parameters;

• Test set for evaluating the model on unseen data.

To illustrate the real need of this strategy, let’s make use of the
Breast Cancer Wisconsin (Diagnostic) Data Set, available online at
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic). The
reader can find a copy of it within the book repository. Again, we read the data
using the egeaML class DataIngestion.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 10 — #28
�

�

�

�

�

�

10 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

In [11]: data_ = DataIngestion(df='breast_cancer_data.csv',

col_to_drop=None,col_target='diagnosis')

X = data_.features()

y = data_.target().apply(lambda x: 1 if x=='M' else 0)

We have not spoken about Scaling yet, but for the moment please take into account
that in many applications, it is a good practice to normalize the data, so that the
magnitude of each feature can be compared. Here, we scale the data, using the scikit-
learn method Scale from the class preprocessing.

In [12]: X=scale(X)

We now split the data into training, validation and test set.

In [13]: X_train, X_test, y_train, y_test= train_test_split(X,y,

test_size=0.3,random_state=42)

In [14]: X_train_,X_val,y_train_,y_val = train_test_split(X_train,

y_train,test_size=0.3, random_state=42)

In [15]: knn = KNeighborsClassifier(n_neighbors=5).fit(

X_train_,y_train_)

In [16]: print("Validation Score: {:.4f}".format(knn.score(

X_val,y_val)))

print("Test Score: {:.4f}".format(knn.score(

X_test,y_test)))

Validation Score: 0.9333

Test Score: 0.9649

Basically we use the validation to select the parameters (in this case the n_neighbors),
and then we use the test set to figure out the model to put into production. This is
nice because this method is simple and fast, but it has at least one problem: it shows
high variance in the test set, since it is splitted twice, and hence it depends on how
you really split the data. As a corollary, another problem can be the bad use of data,
which translates into the fact that if you make the validation set too small, you will
have even more variance in the evaluation.
Hence, what we typically do in practice is cross-validation: instead of splitting the
data into three folds as before, we are going to split the whole data into n folds of

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 11 — #29
�

�

�

�

�

�

1.1. A SIMPLE SUPERVISED MODEL: NEAREST NEIGHBOR 11

equal size. The idea of cross-validation is simple, yet powerful: we pick one fold and
we fix it as the test set, whereas the other n − 1 folds are used to fit the model. How-
ever, instead of just doing it once, we then sequentially fix another fold as the test
set, and fit the same model on the other n − 1 folds, hence considering the fold that
was used before for testing. We repeat this procedure for all the n, non-overlapping
different folds, obtaining n different scores: this is more stable because is less depen-
dent on the split, and each data point is exactly in the test set once. Likewise, the
outcome of cross-validation is made of n scores, from which for instance we can take
the mean (or the median) as overall score, which is indeed a more robust estimate
of how good this kind of model is on this kind of dataset. Figure 1.5 shows how
cross-validation works.1.

Figure 1.5: Representation of a 5-folds cross-validation. This was taken from the

If you also want to tune the parameters, you still need to have a separate test set: so
a good strategy is to split the data into training and test set. You cross-validate the
training set to look for the best parameters, and then you use the test set to evaluate
how the choosen configuration of parameters will perform on new data. As an ex-
ample, the following snippet shows for each n_neighbors the cross-validated score,
and then I select the best model.
With scikit-learn we use the cross_val_score function: it basically split the data into n
independent folds, and computes for each split, the accuracy on that particular split

1This Figure was taken from the open-source documentation of scikit-learn, at the following stable
link: https://scikit-learn.org/stable/modules/cross_validation.html

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 12 — #30
�

�

�

�

�

�

12 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

fold. Then, we pick the best score, and we pick the model parameters associated to
that particular score. If we pick the best configuration, then we train the best model
on the whole training set, and the test score now is indeed an unbiased estimate of
well this model performs in the future.

In [17]: X_train,X_test, y_train, y_test = train_test_split(X,y,

test_size=0.3, random_state=42)

cross_val_scores = []

neighbors = np.arange(1,15,2)

for i in neighbors:

knn = KNeighborsClassifier(n_neighbors=i)

scores = cross_val_score(knn,X_train,y_train,cv=5)

cross_val_scores.append(np.mean(scores))

print("Best CV Score: {:.4f}".format(np.max(

cross_val_scores)))

best_nn = neighbors[np.argmax(cross_val_scores)]

print("Best n_neighbors: {}".format(best_nn))

Best CV Score: 0.6958

Best n_neighbors: 3

You should have noticed a little drawback related to the cross-validation procedure
shown above. Indeed, to perform cross-validation, we had to impose a priori a set
of possibile values where to search for the best parameter (in our case n_neighbors).
This is fine with simple models, like k-NN, but what if we had to search more than
one value, possibly ranging in R? In this scenario, we should fix all possible combi-
nations among the parameters, which might be unmanageable for a sufficient gran-
ular grid of values. Hence, instead of randomly choosing the parameters’ values, a
better approach would be to use an algorithm that automatically finds the best pa-
rameters among all possible combinations of parameter values, that is the one which
typically returns the combination with the highest accuracy.
To implement grid search cross validation in scikit-learn, we use the class Grid-
SearchCV, which actually performs model selection and cross-validation together.
To repeat its workflow, it iterates through all the parameters, and for each combina-
tion of parameters, it does cross-validation finding the best parameters. Once this
is spotted, we train the best model on the whole training dataset. Note that we will

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 13 — #31
�

�

�

�

�

�

1.1. A SIMPLE SUPERVISED MODEL: NEAREST NEIGHBOR 13

use the argument stratify, which controls that the distribution of the class label is the
same in both the training and test set.

In [18]: from sklearn.model_selection import GridSearchCV

X_train, X_test, y_train, y_test = train_test_split(X,y,

stratify=y,test_size=0.3,random_state=42)

param_grid = {'n_neighbors': np.arange(1,15,2)}

clf = KNeighborsClassifier()

grid = GridSearchCV(clf, param_grid= param_grid, cv=10)

grid.fit(X_train,y_train)

print("Best Mean CV Score: {:.4f}".format(

grid.best_score_))

print("Best Params: {}".format(grid.best_params_))

print("Test-set Score: {:.4f}".format(grid.score(

X_test,y_test)))

Best Mean CV Score: 0.8163

Best Params: {'n_neighbors': 7}

Test-set Score: 0.5714

In [19]: results = pd.DataFrame(grid.cv_results_)

print(results.columns)

print(results.params)

Index(['mean_fit_time', 'std_fit_time', 'mean_score_time',

'std_score_time', 'param_n_neighbors', 'params',

'split0_test_score', 'split1_test_score',

'split2_test_score', 'split3_test_score',

'split4_test_score', 'split5_test_score',

'split6_test_score', 'split7_test_score',

'split8_test_score', 'split9_test_score',

'mean_test_score', 'std_test_score', 'rank_test_score'],

dtype='object')

0 {'n_neighbors': 1}

1 {'n_neighbors': 3}

2 {'n_neighbors': 5}

3 {'n_neighbors': 7}

4 {'n_neighbors': 9}

5 {'n_neighbors': 11}

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 14 — #32
�

�

�

�

�

�

14 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

6 {'n_neighbors': 13}

Name: params, dtype: object

1.2 Preprocessing

To introduce the reader to such important topic, which is mainly applied to linear
models, we will use the Boston House Dataset, available in the book-specific GitHub
repository, where the goal is to predict the median price of the Boston’s houses
(MEDV).

In [1]: from egeaML import DataIngestion, Preprocessing

from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier

from sklearn.preprocessing import StandardScaler, OneHotEncoder

from sklearn.preprocessing import PowerTransformer

from sklearn.model_selection import cross_val_score, GridSearchCV

from sklearn.pipeline import make_pipeline

Using TensorFlow backend.

In [2]: reader = DataIngestion(df='boston.csv',col_target = 'MEDV')

df = reader.load_data()

X = reader.features()

y = reader.target()

In order to get a better idea of the effect of each feature on the target variable MEDV,
consider the following series of scatter plots, produced by the next snippet.

In [3]: plt.figure(figsize=(20, 15))

features = list(X)

for i, col in enumerate(features):

plt.subplot(3, len(features)/2 , i+1)

x = df[col]

y = y

plt.scatter(x, y, marker='o')

plt.title(col)

plt.xlabel(col)

plt.ylabel('MEDV')

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 15 — #33
�

�

�

�

�

�

1.2. PREPROCESSING 15

Although most of the above plots do not show a clear relationship, there are two fea-
tures that clearly show some linear dependence: for instance, there is a positive lin-
ear relationship between MEDV and RM (numbers of rooms), whereas when LSTAT
increases MEDV decreases. In particular, when you look at these plots it is easy
to see that some of the features are continuous (e.g. LSTAT or NX), others are binary
(CHAS). But more importantly, it is clear that those features are not in the same scale.
Hence, a very important procedure is to scale data before fitting a ML model.

1.2.1 Scaling Data

Scaling data is very useful, especially when features have different size and magni-
tude. This process improves the score of the model on the test set.

In [4]: data_melted = pd.melt(df)

fig = sns.boxplot(x="variable", y="value", data=data_melted)

plt.ylabel('MEDV')

plt.xlabel('')

fig.set_xticklabels(fig.get_xticklabels(),rotation=30)

plt.show()

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 16 — #34
�

�

�

�

�

�

16 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

It is clear there exists an important variability among features due to the scaling
effect: the magnitude on taxes is of thousands, whereas the one of age is, not
surprisingly, of hundreds. Furthermore, most of them are not normally distributed,
that is they are pretty skewed, and so we need to scale them before fitting a model.
Also, we do not know (a priori) which features might be considered important for
our model, so scaling is a way to implicitly assign equal weight to different features
that show different scale and magnitude: only after scaling we will pick the ones
who explain our target the better (with the drawback of loosing some physical
interpretability).
Typically, to scale data we implement the StandardScaler method in scikit-learn: this
ensures that for each feature the mean is zero and the variance is one, bringing all
features to the same magnitude. A different scaling is the MinMaxScaler method,
scales between a minimum and a maximum value, typically zero and one but it is
flexible. This is especially useful if we have to deal with some features that have
fixed boundaries: for instance, if I have to squash a feature that ranges between 1
and 100, then it makes sense to use this method. If, instead, we are dealing with data
that comes from an extrem-value distribution, probably this method does not make
sense at all. Another one is the RobustScaler, which works similarly to the Standard
one but uses the median and the quantiles, instead of the mean and variance: this
is definitely useful when one has (or suspect to have) outliers, since the median is
known to be robust with respect to them. Finally, one can use the Normalizer method,
which is especially used with count data: the granularity here is each single row,
and normalize each feature vector so that it has a L2-norm equal to one. Note that
it allows also for other norms, such as the L1-norm, which basically translates into
a normalization by the sum of absolute values (and its length should be equal to one).

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 17 — #35
�

�

�

�

�

�

1.2. PREPROCESSING 17

Remark. Sparse dataset are the ones with many zeros: those are very com-
mon in genetics, text analysis and even in fraud detection. A practical problem one
might encounter is that typically we don’t want to store (all) the zeros but only the
ones: this is not easy, since storing say 100,000 zeros for each single row will blow
up the RAM of your local machine. In this scenario, it does not make any sense
to use, say, the StandardScaler, because we would subtract a non-zero mean from a
zero-value record, which might affect negatively the scaling, and affecting the usage
of RAM.

Coming back to the Boston Dataset, we now try to apply the StandardScaler to
the set of features, and then compare the performances between the unscaled and
the scaled dataset..

In [5]: X_train, X_test, y_train, y_test= train_test_split(X,y

, test_size=0.3,random_state=42)

Our simpler example on the Boston Dataset will be based on the StandardScaler
method and on a Regression Task using the KNeighborsRegressor method, which is
basically a more sophisticated model when the target is continuous, as in this case
(i.e. MEDV). Before scaling the data, let us see how the model performs on unscaled
data.

In [6]: scores_unscaled = cross_val_score(KNeighborsRegressor(),

X_train, y_train,cv=5)

scores_unscaled

Out[6]: array([0.63515605, 0.17772906, 0.34902784, 0.43737922, 0.37189903])

Since we are cross-validating the model, we obtain as many scores as the number of
splits (in this case, five). Hence, a good summary measure of model performance is
to take the average of the scores, as follows:

In [7]: np.mean(scores_unscaled), np.std(scores_unscaled)

Out[7]: (0.3942382409253963, 0.14786600926386584)

To scale the data, we instanciate the Python class StandardScaler, and we call the fit
method on the scaler object : this practically means computing the mean and stan-
dard deviation on the training data, whereas the transform on the train data basically
subtract the mean and divide by the standard deviation each single data point in the
training set.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 18 — #36
�

�

�

�

�

�

18 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

In [8]: scaler = StandardScaler()

scaler.fit(X_train)

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

In [9]: scores_scaled = cross_val_score(KNeighborsRegressor(),

X_train_scaled, y_train,cv=5)

np.mean(scores_scaled), np.std(scores_scaled)

Out[9]: (0.7009222608410279, 0.029897124253597467)

We see that the performance increases significatively by scaling the data. But be care-
ful: different scaling methods lead to different results, which requires either proper
Exploratory Data Analysis (EDA) or good attention from the researcher to under-
stand the best method to apply. Last, but not least, one should note that when we
run the scikit-learn cross_val_score method, we have used the entire scaled training
dataset: this means that for each different split done in cross-validation, its corre-
sponding test fold was already used to find the proper scaling, which therefore vi-
olates the independence assumption that we require from the training and the test
set to have unbiased estimates. In other words, we are leaking information from the
test set to find the optimal scaling! Furthermore, when we go into production, new,
unseen data comes into the model, but that set is not going to be used to scale the
training dataset, and therefore could have different scaling and values. To overcome
to this problem, we fit the scaling on only the training dataset, and evaluate the
model performances on the validation set using cross-validation. In order to avoid
this kind of problems, we use the Pipeline class, which allows to perform the splitting
phase within the cross-validation by chaining these two steps.

In [10]: pipeline = make_pipeline(StandardScaler(),

KNeighborsRegressor())

scores_pipe = cross_val_score(pipeline, X_train,

y_train,cv=5)

np.mean(scores_pipe), np.std(scores_pipe)

Out[10]: (0.6944726314773543, 0.028669555232832964)

Note that the pipeline object sequentially applies a list of transforms and a fi-
nal estimator, which only requires to implement the fit method. For a better in-
troduction of this class, please visit the online documentation at https://scikit-
learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html. We can also
perform Grid Search within pipelines as follows:

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 19 — #37
�

�

�

�

�

�

1.2. PREPROCESSING 19

In [11]: par_grid = {'kneighborsregressor__n_neighbors': range(1,10)}

grid = GridSearchCV(pipeline, par_grid=param_grid,cv=5)

grid.fit(X_train, y_train)

print("Number of Neighbors Best Parameter: ",

grid.best_params_['kneighborsregressor__n_neighbors'])

print("Score on Test set: {:.4f}".format(grid.score(

X_test,y_test)))

Number of Neighbors Best Parameter: 2

Score on Test set: 0.7887

1.2.2 Forcing Data to be Gaussian: an Introduction to Power
Transformations

In the next plot we have the feature distribution after scaling: although we have
standardized the features, we still see they show different distributions: for instance,
the feature B is really skewed, whereas the PTRATIO looks completely different.

In [12]: scaler = StandardScaler()

scaler.fit(X)

X_scaled = scaler.transform(X)

plt.boxplot(X_scaled)

plt.xticks(np.arange(1,X.shape[1]+1), list(X), rotation=30)

plt.ylabel('MEDV')

plt.show()

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 20 — #38
�

�

�

�

�

�

20 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

A way to make this data more Gaussian (or at least more behaved) is to use Power
Transformations such as the well-known Box-Cox Transform, introduced by Box and
Cox (1964), defined as follows:

BCλ(x) =

⎧⎨
⎩

xλ−1
λ if λ �= 0

log(x) if λ = 0

The idea is to raise your data x to some power, λ. Note, however, that this is only
applicable to non-negative data points, so be careful when trying to applying this
transformation: in principle, a good practice is to take the absolute value of your
data, but this decision is up to the scientist. Alternatively, one can use the Yeo and
Johnson (1997) power transformation, which accomodates for both positive and neg-
ative values.

In [13]: pt = PowerTransformer(method='yeo-johnson')

data_gauss = pt.fit_transform(X_scaled)

In [14]: print("------ Before Power Transformation ------")

classification_plots.plot_hist(X_scaled,features,'MEDV')

------ Before Power Transformation ------

In [15]: print("------ After Power Transformation ------")

classification_plots.plot_hist(data_gauss,features,'MEDV')

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 21 — #39
�

�

�

�

�

�

1.2. PREPROCESSING 21

------ After Power Transformation ------

1.2.3 Dealing with Categorical Variables

A categorical variable describes a particular class of features that is characterized
by assuming a finite number of values. We introduce how to deal with categorical
variables in Python by showing two different methods: one using the Pandas API
and another one using scikit-learn. For the sake of illustration, we will use a toy
dataset containing the data of a series of Italian restaurants.

In [16]: reader = DataIngestion(df='restaurant.csv',col_target = 'tip')

data = reader.load_data()

In [17]: data.head()

Out[17]: total_bill tip city sex smoker day time size

0 16.99 Yes Milan Female Yes Sat Lunch 2

1 10.34 No Rome Male No Sun Dinner 3

2 21.01 No Bergamo Male No Mon Dinner 3

3 23.68 No Naples Male No Sun Dinner 2

4 24.59 Yes Milan Female No Fri Dinner 4

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 22 — #40
�

�

�

�

�

�

22 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

We see that, apart from the target variable tip, there are five categorical variables in
this toy dataset: city, sex, smoker, day and time. However, we expect our features to
be real numbers, so we need to convert them somehow before training our model.
One possible way is to apply Ordinal Encoding, which actually assigns a real number
to each distinct value in the categorical variable.

In [18]: categorical_variables = ['city','sex','smoker','day','time']

In [19]: data['day_ord']= data['day'].astype("category").cat.codes

In [20]: data.head()

Out[20]: total_bill tip city sex smoker day time size day_ord

0 16.99 Yes Milan Female Yes Sat Lunch 2 2

1 10.34 No Rome Male No Sun Dinner 3 3

2 21.01 No Bergamo Male No Mon Dinner 3 1

3 23.68 No Naples Male No Sun Dinner 2 3

4 24.59 Yes Milan Female No Fri Dinner 4 0

This procedure is fine but has some drawbacks: for instance, it creates and imposes
an ordering on the values. For the day variable, that is fine, but there might be, say, a
column that indicates the city where the restaurant is, and there there is no meaning
on imposing an (arbitrary) order. A solution for this is to use the Dummy Encoding,
using the Pandas function get_dummies, also called OneHotEncoding in the scikit-
learn framework. In particular, what we are doing is adding a new feature (actually
a new column in the dataframe) for each possible value of the categorical variable.
This is easily implemented in Pandas, as follows:

In [21]: data_dummized = pd.get_dummies(data,prefix_sep='_',

prefix=categorical_variables,

columns=categorical_variables,

drop_first=False)

Note that this function categorizes variables that are either objects or categorical, but
we can control which variable is going to be encoded by using the columns attribute
inside the function call. Note also that we have used all the available data to perform
the dummization: there is no problem on doing that, especially if we want to set up
a production system, where new data comes fresh into the model, but we need to
categorize a priori which classes are admissible. For instance, we have not observed
the city of Trento in the training set, but in production it might happen to observe
it. Obviously, we cannot learn anything from it but if there is a valid motivation to

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 23 — #41
�

�

�

�

�

�

1.2. PREPROCESSING 23

include it, we might encode it in the training set even though we have not observed
it. To do that, we might use the Categorical method from Pandas:

In [22]: cat=['Milan', 'Rome', 'Bergamo',

'Naples', 'Como', 'Trieste',

'Brescia', 'Turin', 'Florence', 'Trento']

data['city']=pd.Categorical(data['city'],categories=cat)

pd.get_dummies(data, columns=['city']).head()

Out[22]: total_bill tip sex smoker day time size day_ord city_Milan \
0 16.99 Yes Female Yes Sat Lunch 2 2 1
1 10.34 No Male No Sun Dinner 3 3 0
2 21.01 No Male No Mon Dinner 3 1 0
3 23.68 No Male No Sun Dinner 2 3 0
4 24.59 Yes Female No Fri Dinner 4 0 1

city_Rome city_Bergamo city_Naples city_Como city_Trieste \
0 0 0 0 0 0
1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 0 0

city_Brescia city_Turin city_Florence city_Trento
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

In scikit-learn, the Dummy Encoding is applied via the OneHotEncoding class: it as-
sumes that all the columns we give to the method are categorical, which is not opti-
mal in many cases, since we typically have both categorical and continuous features
in the dataset. The following snippet produces the output obtained from the appli-
cation of that method to the entire data:

In [23]: ohe = OneHotEncoder().fit(data)

ohe.transform(data).toarray()

Out[23]: array([[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.],

[0., 0., 0., ..., 0., 0., 0.],

...,

[0., 0., 1., ..., 0., 1., 0.],

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 24 — #42
�

�

�

�

�

�

24 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

[0., 0., 0., ..., 0., 0., 1.],

[0., 0., 0., ..., 0., 0., 0.]])

In the scikit-learn version 0.20.0 a new way of transforming categorical variables was
introduced: this is called ColumnTransformer, which works similarly to the Pipeline
class. In particular, not only does it give us the possibility to put together several
transformations into a single step, but it also allows one to select which columns to
transform using a certain transformer.

In [24]: from sklearn.compose import make_column_transformer

In [25]: categ = data.dtypes == object

preprocess = make_column_transformer(

(StandardScaler(), ~categ),

(OneHotEncoder(),categ))

model = make_pipeline(preprocess, KNeighborsClassifier())

The previous step basically works as follows:

1. We define which variables are categoricals;

2. We tell the machine that whichever column is not categorical, then a Standard-
Scaler transformation is applied; else, a OneHotEncoder is used;

3. This is put together into a pipeline that fits a Classifier.

Note that the OneHotEncoder can introduce collinearity, and it can be an issue for
non-penalized linear models, which are going to be discussed in Chapter 2.

1.2.4 Handling with Missing Values

Another, very common preprocessing step that any scientist perform before fitting
the model is the so called Imputation of the missing values. This is very common, in
practice, for many reasons, and we are not going to discuss here the motivation of
why this happens. However, take into account that typically one has two strategies:

1. Remove the example that shows one (or more) missing values;

2. Impute the missing value with a reasonable summary statistics

We now show the second option, using the method spotting_null_values from the
book-specific Preprocessing Class. To better undertand what this class does, we use
syntetich data, so that the user can actually visualize the usage of this function:

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 25 — #43
�

�

�

�

�

�

1.2. PREPROCESSING 25

In [26]: data_ = pd.DataFrame({'col1':[np.nan,2,4,8,10],

'col2':[23,26,28,32,40],

'col3':[11000, 9500, np.nan,

np.nan, 14760]},

columns = ['col1','col2','col3'])

In [27]: data_

Out[27]: col1 col2 col3

0 NaN 23 11000.0

1 2.0 26 9500.0

2 4.0 28 NaN

3 8.0 32 NaN

4 10.0 40 14760.0

The function performs two main operations: firstly, it looks for the type of the col-
umn we are focusing on: if it is of type object, then it computes the mode of that
column; it is continuous, then it computes the median, which is a robust statistics to
outliers. Then, for each row, it looks for any possible missing value: if one is spotted,
then its value is inputed, taking into account the type of the column and the value
computed in the first step. We use the book-specific function spotting_null_values to
do that.

In [28]: Preprocessing(list(data_),data_).spotting_null_values()

Out[30]: col1 col2 col3

0 6.0 23 11000.0

1 2.0 26 9500.0

2 4.0 28 11000.0

3 8.0 32 11000.0

4 10.0 40 14760.0

Note that this operation should be done before applying any scaling. A different
case, which is worth to be mentioned here, is the imputation of categorical variables:
in many applications, it is better to leave the empty category within the dummiza-
tion phase, which is reasonable especially when you have to deal with particular
categories. An example could be the type of transaction from a credit card: if that is
not available, it does not make any sense to impute its value with the mode, because
we would put some biased information in the data, not corresponding to the reality.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 26 — #44
�

�

�

�

�

�

26 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

Meanwhile this book was written, a new version of scikit-learn went out (version
0.21.0), where the interest reader can find a new, dynamic, and powerful imputing
method, called IterativeImputer, from the Impute class, which is a clever strategy for
imputing missing values by modeling each feature with missing values as a function
of other features using a supervised learning model. We basically pick each column,
and use it as a target, while using the other k − 1 features as input of the choosen
supervised model (e.g. Random Forest or Linear Regressor), and then one uses that
model to predict on the missing values.

1.3 Methods for Dealing with Imbalanced Data

So far we have focused on a few important characteristics that, globally, distinguish
a dataset, namely how to deal with categorical variables (or missing values), and
to scale the data. The dataset preprocessing is probably the most important step
in building a ML model, since its outcome is going to be strictly dependent on
that step. However, real datasets deal with many others possible features that we
have not discussed yet: among many, it is worth to mention the issue of imbalanced
datasets. Imbalanced datasets often arise in classification problems where the classes
are not equally distributed among the examples. Unfortunately, this is quite a com-
mon problem in Machine Learning and Computer Vision, since we might not have a
sufficient number of training examples that allows to correctly predict the minority
class. This issue affects different areas, including cancer diagnosis using f-MRI, cy-
ber security, and financial crime. As an example, insurance companies are investing
resources in constructing ML pipelines to detect fraudolent behaviours in reported
claims. Luckily, most of them are not fraudolent, and just a few of belong instead
to the positive class (i.e. the fraudolent one). As a consequence, if we try to fit a
classifier on such an imbalanced dataset, it is likely to get a biased model, since the
classifier always predicts the most common training class, regarding the examples
values, and therefore getting a very high accuracy. As an example, let us try to fit a
simple knn classifier on the imbalanced Kaggle Credit Card Fraud Detection dataset
available at the following link: https://www.kaggle.com/mlg-ulb/creditcardfraud.
This dataset contains European credit card transactions, and 492 out of 284,807 trans-
actions were labelled as frauds.

In [29]: from egeaML import DataIngestion

from sklearn.utils import resample

from imblearn.over_sampling import SMOTE

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 27 — #45
�

�

�

�

�

�

1.3. METHODS FOR DEALING WITH IMBALANCED DATA 27

Using TensorFlow backend.

In [30]: di = DataIngestion(df='creditcard.csv', col_to_drop=None,

col_target='Class')

df = di.load_data()

title = ' Imbalanced Credit Card Fraud Dataset'

di.plot_counts('Class', 'title')

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x1a346f6400>

In [31]: X = di.features()

y = di.target()

In [32]: X_train, X_test, y_train, y_test = di.split_train_test(

test_size=0.3, random_seed=42)

We now fit a simple knn model, and look at its performances on this imbalanced
dataset.

In [33]: knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X_train,y_train)

y_pred = knn.predict(X_test)

score = knn.score(X_test,y_test)

print("accuracy: {:.4f}".format(score))

accuracy: 0.9984

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 28 — #46
�

�

�

�

�

�

28 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

Not surprisingly, we get an illusory, almost perfect accuracy, since the 395 frauds
account for only the 0.1785% of all training transactions. Therefore, when dealing
with imbalanced datasets in a classification framework, accuracy is not anymore a
good metric. Therefore, we have (at least) three different possibilities to tackle this
problem:

1. Changing the algorithm: this might be a simple choice, but sometimes it in-
creases the performances on the negative class. A very popular choice is nowa-
days the family of ensemble methods, which are discussed in Chapter 3;

2. Changing the evaluation metric: instead of using accuracy, we might use pre-
cision or recall (to investigate these concepts, please refer to Chapter 2 in the
section on Classification);

3. Resorting to Resampling Techniques: this strategy has been widely used in the
computer vision community to resample images when the datasets were too
small to train a image recognizer. Nowadays, this is widely used in ML when
one has to face a shortage of data in a given class.

In this Section, we will focus on resampling techniques that allow to either oversam-
ple the minority class or undersample the majority class.

1.3.1 Random Oversampling of the Majority Class

This situation refers to adding more examples to the minority class: although this
simple, yet powerful, strategy allows one to get balanced classes, the major draw-
back of this technique is that it simply add duplicates of the previous examples,
increasing the possibility of overfitting. To do so, we use the scikit-learn function
resample. Note that since we aim to upsample the minority class, we would like the
minority to have the same lenght of the majority class by setting n_samples equal to
len(\textsf{majority_class}).

In [34]: train, test = train_test_split(df,

test_size=0.3,

random_state=42)

In [35]: major_class = train[train.Class==0]

minority_class = train[train.Class==1]

upsampled_class = resample(minority_class,

replace=True,

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 29 — #47
�

�

�

�

�

�

1.3. METHODS FOR DEALING WITH IMBALANCED DATA 29

n_samples=len(major_class),

random_state=27)

upsampled_data = pd.concat([major_class, upsampled_class])

In [36]: plt.figure(figsize=(8, 5))

t='Balanced Classes after upsampling.'

upsampled_data.Class.value_counts().plot(kind='bar', title=t)

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x1153d0e80>

1.3.2 Random Undersampling of the Majority Class

This situation refers to removing examples from the majority class. Note that the ma-
jor drawback of this technique is that removing units from the majority class might
cause a significant loss of information in the training set, which translates into pos-
sible underfitting.

In [37]: down_class = resample(major_class,

replace=False,

n_samples=len(minority_class),

random_state=27)

downsampled_data = pd.concat([down_class, minority_class])

In [38]: plt.figure(figsize=(8, 5))

t='Balanced Classes after upsampling.'

downsampled_data.Class.value_counts().plot(kind='bar', title=t)

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x1a35e92b70>

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 30 — #48
�

�

�

�

�

�

30 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

1.3.3 Oversampling using Synthetic Data: SMOTE

SMOTE stands for Synthetic Minority Oversampling TEchnique, and it was pro-
posed by Chawla et al. (2002) as an alternative to random oversampling. How does
it works? Well, it merges two ideas we have deepen so far: random sampling and
k-nearest neighbours. Indeed, SMOTE allows to create new data from the minority
class (they are not copy of the observed one, as in random resampling), and automat-
ically computes the k-nns for those points. The synthetic points are added between
the chosen point and its neighbors. Note that the imblearn API, which is part of the
scikit-learn project, is used to apply the SMOTE in the following snippet.

In [39]: smote = SMOTE(sampling_strategy='minority')

X_smote, y_smote = smote.fit_sample(X_train, y_train)

X_smote = pd.DataFrame(X_smote, columns=X_train.columns)

y_smote = pd.DataFrame(y_smote, columns=['Class'])

In [40]: smote_data = pd.concat([X_smote,y_smote],axis=1)

plt.figure(figsize=(8, 5))

title='Balanced Classes using SMOTE'

smote_data.Class.value_counts().plot(kind='bar', title=title)

Out[40]: <matplotlib.axes._subplots.AxesSubplot at 0x1a36e25080>

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 31 — #49
�

�

�

�

�

�

1.4. REDUCING DIMENSIONALITY: PRINCIPAL COMPONENT ANALYSIS 31

Note that when the parameter sampling_strategy is equal to minority, this forces the
algorithm to resample only the minority class with a corresponding ratio of 1:1.

1.4 Reducing Dimensionality: Principal Component

Analysis

In the modern era of machine learning, people involved in data science have to deal
with a large number of variables. For example, in computer vision problems, we
have to deal with images classification, which machine representation is on term of
pixels. In order to make quantitative analysis, those pixels are described as quanti-
tative (binary) variables. But a natural question is: how many pixels does an image
have? If we pick a modern 4K image, its resolution is 3840 x 2160 pixels, and so to
process such image, we need to take into account 24, 883, 200 variables (just multiply
the number of pixels by the three color channels, i.e. blue, red and green).
This is a huge amount of features, and dealing with all of them might be extremely
painful for many machine learning algorithms. Indeed, high dimensionality in-
creases the computational complexity, as well as it increases the risk of overfitting
and the chances of having sparsity. Hence, it is good practice to reduce the dimen-
sionality of the problem by projecting the data into a space with less dimension, which
allows to control these effects.
There exists a large number of dimensionality reduction techniques known in litera-
ture, but we will focus on the Principal Component Analysis.
Principal component analysis is one of the oldest and best known methods for reduc-
ing dimensionality in multivariate problems. It basically aims at finding a few prin-
cipal components that contain as much information on the dependent variable as the

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 32 — #50
�

�

�

�

�

�

32 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

one contained in the original set of predictors: this original set of variables is trans-
formed into a smaller set of linear combinations, called principal components (PC).
These new variables are uncorrelated and ordered so that the first PC accounts for
the largest proportion of the variation present in the original set of features. Note that
in regression problems, it is essentially used to prevent (or at least reduce) collinear-
ity among independent variables.

1.4.1 PCA as dimensionality reduction

PCA basically rotates the dataset so that the rotated features are statistically uncor-
related. This rotation is often followed by selecting the principal components, ac-
cording to how important they are for explaining the data. The algorithm works as
follows: we look for the vector (or direction) in the data that contains most of the
information, that is the direction along which the features are most correlated with
each other. Then, the algorithm finds the direction that contains the most informa-
tion while being orthogonal (at a right angle) to the first direction, and so on. In
two dimensions, there is only one possible orientation, that is at a right angle, but in
higher-dimensional spaces there would be (infinitely) many orthogonal directions.
Note that the length of each vector is an indication of how important that axis is in
describing the distribution of the data, that is it is a measure of the variance of the
data when projected onto the axis. The projection of each data point onto the princi-
pal axes are indeed the principal components of the data.
As an illustrative example, let’s consider the following toy dataset, which is shown
in Figure 1.6:

In [41]: rng = np.random.RandomState(1)

X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T

plt.scatter(X[:, 0], X[:, 1], alpha=0.2)

plt.axis('equal')

Using PCA for dimensionality reduction means using only a few components, re-
sulting in a lower-dimensional representation of the original dataset that preserves
the maximal data variance. This is easily achieved in scikit-learn, using the methods
fit_transform from the class PCA: in this example, the original data are reduced to a
single dimension.

In [42]: pca = PCA(n_components=1)

X_pca = pca.fit_transform(X)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 33 — #51
�

�

�

�

�

�

1.4. REDUCING DIMENSIONALITY: PRINCIPAL COMPONENT ANALYSIS 33

Figure 1.6: Principal Component Analysis: Scatter Plot of the Original Data

print("original shape: ", X.shape)

print("transformed shape:", X_pca.shape)

original shape: (200, 2)

transformed shape: (200, 1)

The following plot, shown in Figure 1.7, shows the effect of this dimensionality re-
duction on the original data:

In [43]: X_new = pca.inverse_transform(X_pca)

plt.scatter(X[:, 0], X[:, 1], alpha=0.2)

plt.scatter(X_new[:, 0], X_new[:, 1], alpha=0.8)

plt.axis('equal');
The orange dots are the original data, while the blue ones are the projected ver-
sion. This makes clear what a PCA dimensionality reduction means: the informa-
tion along the least important principal axis or axes is removed, leaving only the
component(s) of the data with the highest variance. Notably, the fraction of variance
that is cut out (proportional to the spread of points about the line formed in this fig-
ure) is roughly a measure of how much information is discarded in this reduction of
dimensionality.

In [44]: print(pca.explained_variance_)

[0.7625315]

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 34 — #52
�

�

�

�

�

�

34 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

Figure 1.7: Transformation and Dimensionality reduction on a simple 2-dim feature
space.

When dealing with real-data, you should remember to scale the data before applying
PCA, otherwise the magnitude of the larger features will dominate the first compo-
nent with respect to other components. Let’s see, in practice, what this means on the
breast cancer data. Note that the attribute fit_transform transforms the data onto the
first n = 2 principal components. The result is shown in Figure 1.8.

Figure 1.8: Transformation of the two Principal Components after Scaling.

In [45]: from sklearn.pipeline import make_pipeline

from sklearn.datasets import load_breast_cancer

df = load_breast_cancer()

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 35 — #53
�

�

�

�

�

�

1.4. REDUCING DIMENSIONALITY: PRINCIPAL COMPONENT ANALYSIS 35

pca = make_pipeline(StandardScaler(),PCA(n_components=2))

X_pca = pca.fit_transform(df.data)

plt.scatter(X_pca[:,0], X_pca[:,1], c=df.target)

Out[45]: <matplotlib.collections.PathCollection at 0x1a1ad75e48>

In [46]: components = pca.named_steps['pca'].components_

plt.imshow(components.T)

plt.yticks(range(len(df.feature_names)), df.feature_names)

plt.colorbar()

plt.show()

As shown in Figure 1.9, all features now (with scaling) contribute to the first princi-
pal component. Note that if scaling is not performed, then some features will have
larger magnitude, and the ones with larger magnitude will contribute to the first
component. From Figure 1.9 we can also see that in the first component, all features
have the same sign. That means that there is a general correlation between all fea-
tures. As one measurement is high, the others are likely to be high as well. The
second component has mixed signs, and both of the components involve all of the
30 features.

Figure 1.9: Impact of each feature on the first two Principal Components.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 36 — #54
�

�

�

�

�

�

36 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

1.4.2 Feature extraction

We introduced PCA as an algorithm that transforms the original data by rotating
them and then dropping the components with lower variance retention. Another
application of PCA is feature extraction. The idea behind feature extraction is that it
is possible to find a (linear) representation of your data that better describes the data.
In other words, the objective is to try to find some numbers, that is the new feature
values after the PCA rotation, so that we can express the test points as a weighted
sum of the principal components.
We will give a very simple application of feature extraction on images using PCA, by
working with face images from the Labeled Faces in the Wild dataset. This dataset
contains face images of celebrities downloaded from the Internet, and it includes
faces of politicians, singers, actors, and athletes from the early 2000s. There are 3,023
images, each 62 × 47 pixels large, belonging to 62 different people.
Hence, we have 2914 features, and we would like to use PCA to reduce the dimen-
sionality of the problem.

In [47]: from sklearn.datasets import fetch_lfw_people

faces = fetch_lfw_people(min_faces_per_person=20)

print("Image Shape: {}".format(faces.images.shape))

print("Number of Features: {}".format(faces.data.shape[1]))

print("Number of classes: {}".format(len(faces.target_names)))

X = faces.data

y=faces.target

Image Shape: (3023, 62, 47)

Number of Features: 2914

Number of classes: 62

A common task in face recognition is to ask if a previously unseen face belongs to
a known person from a database. This has applications in photo collections, so-
cial media, and security applications. One way to solve this problem would be to
build a classifier where each person is a separate class. However, there are usually
many different people in face databases, and very few images of the same person
(i.e. very few training examples per class). That makes it hard to train most clas-
sifiers. A simple solution is to use a 1-nearest neighbor classifier that looks for the
most similar face image to the face you are classifying.

In [48]: X_train, X_test, y_train, y_test = train_test_split(X, y,

stratify=y,random_state=0)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 37 — #55
�

�

�

�

�

�

1.4. REDUCING DIMENSIONALITY: PRINCIPAL COMPONENT ANALYSIS 37

print(X_train.shape)

knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X_train, y_train)

print("Test set score of 1-nn: {:.2f}".format(knn.score(

X_test, y_test)))

(2267, 2914)

Test set score of 1-nn: 0.33

We obtain an accuracy of 33%, which is not actually that bad for a 62-class classi-
fication problem. Note that random guessing would give us approximately 1.5%
accuracy, but that is also not great. We correctly identify a person every third time.
We firstly note that here we have more features than samples, which might be a
problem with many standard algorithms. Likewise, PCA can only handle as many
components as the minimum between features and samples.

In [49]: pca = PCA(n_components=100, whiten=True,

random_state=0).fit(X_train)

X_train_pca = pca.transform(X_train)

X_test_pca = pca.transform(X_test)

print("X_train_pca.shape: {}".format(X_train_pca.shape))

knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X_train_pca, y_train)

print("Test set score of 1-nn: {:.2f}".

format(knn.score(X_test_pca, y_test)))

X_train_pca.shape: (2267, 100)

Test set score of 1-nn: 0.46

We have improved accuracy by approximately 40% by reducing the dimensionality
of the problem, even by using a simple algorithm as 1-nn!

1.4.3 Nonlinear Manifold Algorithm: t-SNE

PCA is a method of constructing a particular linear transformation which results in
new coordinates of the samples with very well defined properties (such as orthog-
onality between the different components). In other words, PCA works well only
when data is basically linearly separable. Typically, when we do not have such kind

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 38 — #56
�

�

�

�

�

�

38 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

of data, we use manifold learning algorithm, such as t-SNE to compute a new repre-
sentation of the (training) data, without actually transforming them as in PCA. The
key idea is to find a 2-dim representation of the data that preserves the distances
between points as best as possible.
t-SNE is an algorithm proposed by van der Maaten and Hinton in 2008, designed
with a different goal in mind, that is the ability to group similar data points even
in a context of lack of linearity. However, while t-SNE is very good at tackling the
particular goal of clustering similar samples, it has a major disadvantage compared
to PCA: it gives you a low-dimensional representation of your data, but it does not
give you a transformation. In other words, you cannot interpret the dimensions in
a similar way you interpret the components in a PCA. It might be, therefore, useful
to explore multidimensional data, but that might not be useful to interpret tasks that
requires a physical interpretation of the ML models (like the example we saw when
applying the PCA to Logistic regression). t-SNE are extremely used in genetics, es-
pecially in next generation sequencing,ro evaluate single-cell transcriptomic data.

In [40]: from sklearn.datasets import load_digits

digits = load_digits()

pca = PCA(n_components=2)

pca.fit(digits.data)

digits_pca = pca.transform(digits.data)

colors = ["#476A2A", "#7851B8", "#BD3430", "#4A2D4E",

"#875525", "#A83683", "#4E655E", "#853541",

"#3A3120", "#535D8E"]

plt.figure(figsize=(10, 10))

plt.xlim(digits_pca[:, 0].min(), digits_pca[:, 0].max())

plt.ylim(digits_pca[:, 1].min(), digits_pca[:, 1].max())

for i in range(len(digits.data)):

plt.text(digits_pca[i, 0], digits_pca[i, 1],

str(digits.target[i]),

color = colors[digits.target[i]],

fontdict={'weight': 'bold', 'size': 9})

plt.xlabel("First principal component")

plt.ylabel("Second principal component")

Out[40]: Text(0,0.5,'Second principal component')

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 39 — #57
�

�

�

�

�

�

1.4. REDUCING DIMENSIONALITY: PRINCIPAL COMPONENT ANALYSIS 39

The classes zero, six, and four are relatively well separated using the first two prin-
cipal components, though they still overlap. Most of the other digits overlap signif-
icantly. Let’s apply t-SNE to the same dataset, and compare the results. As t-SNE
does not support transforming new data, the TSNE class has no transform method.
Instead, we can call the fit_transform attribute, which will build the model and im-
mediately return the transformed data.

In [41]: from sklearn.manifold import TSNE

tsne = TSNE(random_state=42, perplexity=30)

digits_tsne = tsne.fit_transform(digits.data)

In [42]: plt.figure(figsize=(10, 10))

plt.xlim(digits_tsne[:, 0].min(), digits_tsne[:, 0].max() + 1)

plt.ylim(digits_tsne[:, 1].min(), digits_tsne[:, 1].max() + 1)

for i in range(len(digits.data)):

plt.text(digits_tsne[i, 0], digits_tsne[i, 1],

str(digits.target[i]),

color = colors[digits.target[i]],

fontdict={'weight': 'bold', 'size': 9})

plt.xlabel("t-SNE feature 0")

plt.xlabel("t-SNE feature 1")

Out[42]: Text(0.5,0,'t-SNE feature 1')

The result obtained with t-SNE is quite remarkable. All the classes are quite clearly
separated. The ones and nines are somewhat split up, but most of the classes form

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 40 — #58
�

�

�

�

�

�

40 CHAPTER 1. INTRODUCTION TO MACHINE LEARNING

Figure 1.10: Application of t-SNE on the digits dataset.

a single dense group. Keep in mind that this method has no knowledge of the class
labels: it is completely unsupervised. Still, it can find a representation of the data in
two dimensions that clearly separates the classes, solely based on how close points
are in the original space.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 41 — #59
�

�

�

�

�

�

Chapter 2

Linear Models for Machine
Learning

One of the most simplest supervised machine learning techniques is the family of
regression models. A regression model is used to predict a continuous response
variable based on a set of features. In particular, here we will focus on linear mod-
els, which actually translates into the assumption that the response variable can be
expressed as a linear combination of the given features. We will then move to shrink-
age methods in regression analysis, and discuss some properties and relationship of
the proposed models. In the last part of this Chapter, Logistic Regression and SVM
are discussed.

In [1]: from egeaML import DataIngestion, plots

from sklearn.linear_model import LinearRegression, Ridge,

Lasso, ElasticNet

from sklearn.model_selection import cross_val_score,

GridSearchCV, train_test_split

from sklearn.metrics import mean_squared_error

To illustrate the methods in this section, we make use of the Boston House data, which
is available within the specific-book library egeaML. We wish to predict the median
value of the house based of some features. Typically, the features are separated from
the target variable - i.e. the median value - and we split the dataset into training set,
i.e. the dataset we are going to use to train the model, and test set.

In [2]: di = DataIngestion(df='boston.csv',col_to_drop=None,

col_target='MEDV')

41

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 42 — #60
�

�

�

�

�

�

42 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

X = di.features()

y = di.target()

X_train, X_test, y_train, y_test= train_test_split(X,y,

test_size=0.3,random_state=42)

The interest reader can refer to the well-written, more theoretical book by Friedman
et al. (2008), which is considered the main reference for anyone who aims to deepen
her knowledge on the theory behind the main machine learning methods. I strongly
encourage this book for anyone who wants to get a better understanding of penal-
ized methods, proposed in this Chapter.

2.1 Linear Regression

The most simplest model we might employ for the analysis of the Boston data is the
Ordinary Least Square regression model (OLS). Its objective is to find the vector of
parameters, denoted by β, so that it minimizes the residuals’ sum of squares, which
is equivalent to say that the prediction ŷ should, in the training set, be much closer
as possible to the true y,

min
β∈Rp

p

∑
i=1

||βTxi − yi||2

Be careful: features should not be linearly dependent (i.e. absence of collinearity)
and full rank assumption in order the β̂ to be unique.
To fit a linear regression model, scikit-learn requires a very simple recipe, which con-
sists of two simple commands, shown below:

In [3]: reg = LinearRegression()

fit = reg.fit(X_train,y_train)

print('Regression R2 Score: {:.4f}'.format(reg.score(

X_test,y_test)))

Regression R2 Score: 0.7112

We have trained a linear model but now we would like to see the model perfor-
mance on unseen data. Hence, we fit the model on the test data, and evaluate its
performance using the RMSE as score metric.
Note that the R2 is a normalized version of the MSE, but we typically use the MSE

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 43 — #61
�

�

�

�

�

�

2.1. LINEAR REGRESSION 43

as the reporting metric since it is the loss-function we are trying to minimize. How-
ever, R2 is useful since it does not depend on the scale of the data, and it is easily
interpretable. More formally, the R2 is defined as follows:

R2 = 1 − ∑i(yi − ŷ)2

∑i(yi − ȳ)2

where the denominator denotes the total variation, whereas the numerator is the
residual sum of squares. Likewise, the MSE is defined as

MSE(β̂) =
1
n

n

∑
i=1

(yi − ŷ)2

In [4]: y_pred = reg.predict(X_test)

e = y_pred-y_test

print('RMSE:{:.4f}'.format(np.sqrt(mean_squared_error(

y_test,y_pred))))

RMSE:4.6387

This result is pretty good but it might be given by chance. As we discussed in Chap-
ter 1, a possible strategy is to implement k-Fold cross validation to validate the model
on the data. We split our data on, say, k=10 different Folds. We hold out the first fold,
as a test set, and the remaining 9 act as training set. We fit the model on this training
set, and evaluate the performance on the test set, obtaining a score. We then hold
the second fold as test set, and the remaining 9 folds as training set. We repeat the
same process as before, obtaining a new score. We repeat this process for each fold,
obtaining then 10 different scores. We then compute the mean of these scores, and
we compare it with the score obtained before from the first analysis.

In [5]: cv_scores = cross_val_score(reg,X_train, y_train, cv=10)

print("Average 10-Fold CV Score: {}".format(

(np.mean(cv_scores))))

Average 10-Fold CV Score: 0.6875346951141157

It looks like the model works pretty well with the Boston dataset. Note that the
power of linear model depends on the number of degrees of freedom of the model,
that is the number of features we are considering in fitting the model. If the number

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 44 — #62
�

�

�

�

�

�

44 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

of samples is large enough (compared to the number of features), then OLS should
perform pretty well. However, as the number of features increases, regularized mod-
els perform much better.

2.2 Shrinkage Methods

2.2.1 Ridge Regression

Among all unbiased linear techniques, the OLS estimated coefficients are BLUE (Best
Linear Unbiased Estimators) with lowest variance, which attains the Cramer-Rao
lower bound. However, there is a well known statistical trade-off between variance
and bias, so that it is possible to produce models with smaller MSEs by allowing the
parameter estimates to be biased. This has an important advantage: by introducing
some bias we will obviously loose efficency but we would decrease the test error.
Recall that the bias is defined as the difference between the model’s average predic-
tion and the true population value, which we aim to predict. In its general terms, the
MSE can be therefore rewritten as follows:

MSE(β̂) = Var(β̂) + bias(β, β̂)

One method of creating biased regression models is to add a penalty to the sum of
the squared errors (SSE). We firsty investigate the Ridge Regression Model, which adds
a penalty on the sum of the squared regression parameters

min
β∈Rp

p

∑
i=1

||βTxi − yi||2 + α||β||2

Technically, we have added a penalty, which consists of the squared of the L2 norm
of β; this signifies that a second-order penalty (i.e. the square) is being used on the
parameter estimates. The implication of using such norm is that larger values of the
parameter estimates are penalized more than smaller values. In effect, this method
shrinks the estimates towards 0 as the α penalty becomes large: that’s why these
techniques are also called shrinkage methods. We expect the coeffcient estimates to be
much smaller, in terms of L2 norm, when a large value of α is used, as compared to
when a small value of α is used.
By sacrificing some bias, we can often reduce the variance enough to make the over-
all MSE lower than unbiased models (such as OLS). The Ridge model makes a trade-
off between the simplicity of the model (near-zero coefficients) and its performance

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 45 — #63
�

�

�

�

�

�

2.2. SHRINKAGE METHODS 45

on the training set. How much importance the model places on simplicity versus
training set performance is specified by α (hyper)-parameter. Increasing α forces the
coefficients to move more toward zero, which decreases training set performance but
might help generalization (on the test set). Note that by constraining the model, in
general, our training performance is worst, but we hope the model will generalize
better on the test set. Indeed, if we increase α, model complexity goes down, but the
test score should, at least for a while, goes up (or gets better compared to models
without regularization).
Regularized models such as the Ridge depends on the hyperparameter α, which
should be estimated. A very simple question is: how can we evaluate them? We
firtly need to find the optimal value of α that allows us to estimate the model.
Note also that Ridge solutions are not equivalent under scaling of the inputs, so we
need to center and scale the predictors so that they are in the same units!
Put in different words, Ridge regression regularizes the linear regression by impos-
ing a penalty on the size of coefficients. Thus the coefficients are shrunk toward zero
and toward each other. But when this happens and if the independent variables does
not have the same scale, the shrinking is not fair. Two independent variables with
different scales will have different contributions to the penalized terms, because the
penalized term is a sum of squares of all the coefficients. To avoid such kind of prob-
lems, notably, the independent variables are centered and scaled in order to have
variance one.
The following code implements the fitting of a Ridge regression model in Python,
using the scikit-learn class Ridge .

In [6]: ridge = Ridge(normalize=True)

ridge.fit(X_train, y_train)

ridge.score(X_test,y_test)

score = format(ridge.score(X_test,y_test), '.4f')

print('Ridge Reg Score with Normalization: {}'.format(score))

Ridge Reg Score with Normalization: 0.6241

In [7]: from sklearn.pipeline import make_pipeline, Pipeline

from sklearn.preprocessing import StandardScaler

pipe = make_pipeline(StandardScaler(), Ridge())

pipe.fit(X_train,y_train)

score_pipe = format(pipe.score(X_test,y_test), '.4f')

print('Standardized Ridge Score:{}'.format(score_pipe))

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 46 — #64
�

�

�

�

�

�

46 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

Standardized Ridge Score: 0.7108

Numerically, we can see that we have a fair improvement on the estimation of the
model (compared to the Linear Regression), but to get a better understanding of the
penalty effect on the estimated values, let’s plot the shrinkage effect for different
values of α’s, which shows us the shrinkage effect towards zero of the regression
coefficients.

In [8]: ridge = Ridge(normalize=True)

alphas = np.logspace(-3,3,10)

coef = []

for a in alphas:

ridge.set_params(alpha=a)

ridge.fit(X_train,y_train)

coef.append(ridge.coef_)

ax = plt.gca()

ax.plot(alphas, coef)

ax.set_xscale('log')

ax.set_xlim(ax.get_xlim())

plt.xlabel('$\\alpha$ (alpha)')

plt.ylabel('Regression Coefficients')

plt.show()

Figure 2.1 shows how the coefficients are shrunk towards zero as α gets bigger. In
order to choose the value of α that determines the best model, we cross-validate
the solution, that is we look for the value of α that maximizes the R2, which is by
default the score metric in scikit-learn. This is done by performing the GridSearchCV,
as follows:

In [9]: param_grid = {'alpha': np.logspace(-3,3,10)}

grid = GridSearchCV(ridge, param_grid, cv=10,

return_train_score=True)

grid.fit(X_train,y_train)

best_score = float(format(grid.best_score_, '.4f'))

print('Best CV score: {:.4f}'.format(grid.best_score_))

print('Best parameter :',grid.best_params_)

Best CV score: 0.6887

Best parameter : {'alpha': 0.1}

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 47 — #65
�

�

�

�

�

�

2.2. SHRINKAGE METHODS 47

Figure 2.1: Shrinkage effect on the Regression Coefficients in the Boston House
Dataset under a L2-penalty model.

Let’s try to fit a series of Ridge regression model for different values of α.

In [10]: def ridge_reg(alpha_par):

ridge = Ridge(alpha=alpha_par, normalize=True)

ridge.fit(X_train,y_train)

ridge.predict(X_test)

score = format(ridge.score(X_test,y_test), '.4f')

if alpha_par == 'best_score':

print('Model with best alpha=', str(alpha_par) +

' has a score equal to ' + str(score))

else:

print('Model with alpha=' + str(alpha_par) +

' has a score equal to ' + str(score))

In [11]: for a in [best_score, 1, 10]:

ridge_reg(a)

Model with alpha=0.1 has a score equal to 0.6997

Model with alpha=1 has a score equal to 0.6241

Model with alpha=10 has a score equal to 0.2951

We see that the model performances drammatically decrease as α gets bigger. The

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 48 — #66
�

�

�

�

�

�

48 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

best score for the proposed Ridge model was obtained with the value of α = 0.1.
Typically, one is interested not just in the estimated value, but also on the uncer-
tanty over that estimate value; hence, we would like to see how much variability we
have got on both the training and test sets of the cross-validation folds, and possibly
showing the insights with a proper plot.

In [12]: train_scores_mean = grid.cv_results_["mean_train_score"]

train_scores_std = grid.cv_results_["std_train_score"]

test_scores_mean = grid.cv_results_["mean_test_score"]

test_scores_std = grid.cv_results_["std_test_score"]

plt.figure()

plt.title('Model Performance')

plt.xlabel('$\\alpha$ (alpha)')

plt.ylabel('Score')

plt.semilogx(alphas, train_scores_mean,

label='Mean Train score',color='navy')

plt.gca().fill_between(alphas,

train_scores_mean - train_scores_std,

train_scores_mean + train_scores_std,

alpha=0.2,

color='navy')

plt.semilogx(alphas, test_scores_mean,

label='Mean Test score', color='darkorange')

plt.gca().fill_between(alphas,

test_scores_mean - test_scores_std,

test_scores_mean + test_scores_std,

alpha=0.2,

color='darkorange')

plt.legend(loc='best')

plt.show()

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 49 — #67
�

�

�

�

�

�

2.2. SHRINKAGE METHODS 49

Figure 2.2: Mean Training vs Mean Test score under the Ridge Model for different
value of α, with corresponding uncertanty. We see that the uncertanty drammatically
reduce its effect after certain values of α, and that the train and test looks very similar,
though the train always performs better than the test set, for those values.

2.2.2 Lasso Regression

While Ridge regression shrinks the parameter estimates towards 0, the model does
not set the values to absolute 0 for any value of the penalty. Even though some pa-
rameter estimates become negligibly small, this model does not conduct feature se-
lection. A popular alternative to Ridge is the Lasso Regression, which was introduced
by Tibshirani (1996). See also Tibshirani (2013) for a more advanced discussion on
the uniqueness of the Lasso solution. This model uses a similar penalty tfo ridge
regression:

min
β∈Rp

p

∑
i=1

||βTxi − yi||2 + α||β||1

but differently from that, we are using L1 norm, which is the sum of absolute val-
ues. While the regression coefficients are still shrunk towards zero, differently from
L2 norm, which penalizes more very large coefficients, L1 penalizes coeffficients
equally. In practice, this means that we are basically setting some coefficients equal
to zero for some values of α: so this model not only performs regularization to im-
prove the model but it also conducts a sort of feature selection.
In the next snippet, we are going to fit a series of Lasso models for different values
of α, and then we append to a new list all the estimated coefficients.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 50 — #68
�

�

�

�

�

�

50 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

In [13]: lasso = Lasso(max_iter=10000,normalize=True)

coefs = list()

for alpha in alphas:

lasso.set_params(alpha=alpha)

lasso.fit(X_train,y_train)

coefs.append(lasso.coef_)

ax = plt.gca()

ax.plot(alphas, coefs)

ax.set_xscale('log')

ax.set_xlim(ax.get_xlim())

plt.xlabel('$\\alpha$ (alpha)')

plt.ylabel('Regression Coefficients')

plt.show()

Figure 2.3: Shrinkage effect on the Regression Coefficients using a Lasso Penaliza-
tion.

Typically, one resorts to Lasso regression because it shrinks some of the coefficients
to zero, which litterally translates into feature selection. We implent this method
afain on the Boston House dataset, and see which features seem to be relevant for
the prediction of the median house price.

In [14]: names = df.drop('MEDV', axis=1).columns

lasso = Lasso(alpha=0.1, normalize=True)

lasso_coef = lasso.fit(X, y).coef_

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 51 — #69
�

�

�

�

�

�

2.2. SHRINKAGE METHODS 51

_ = plt.plot(range(len(names)), lasso_coef)

_ = plt.xticks(range(len(names)), names, rotation=60)

_ = plt.ylabel('Coefficients')

plt.show()

Figure 2.4: Feature Importance in Lasso regression.

Lasso’s coefficients most important predictors have values different from zero,
whereas the others are shrunk to zero. This is very important procedure for any
machine learning model, since it allows you to communicate a numerical result in
terms of important factors that affect the dependent variable.

2.2.3 Elastic Net

A generalization of the lasso model is the Elastic Net, introduced by Zou and Hastie
(2005), which combines both L1 and L2 penalties together:

min
β∈Rp

p

∑
i=1

||βTxi − yi||2 + α1||β||1 + α2||β||22

In scikit-learn, it is parametrized differently

min
β∈Rp

p

∑
i=1

||βTxi − yi||2 + α η||β||1 + α (1 − η) ||β||22

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 52 — #70
�

�

�

�

�

�

52 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

where η captures the relative amount of L1-penalty.

In [15]: steps = [('scaler', StandardScaler()),

('elasticnet', ElasticNet())]

pipeline = Pipeline(steps)

parameters = {'elasticnet__l1_ratio': np.linspace(0, 1, 30)}

gm_cv = GridSearchCV(pipeline, param_grid=parameters)

gm_cv.fit(X_train, y_train)

r2 = gm_cv.score(X_test, y_test)

print("Tuned ElasticNet Alpha: {}".format(gm_cv.best_params_))

print("Tuned ElasticNet R squared: {}".format(r2))

Tuned ElasticNet Alpha: {'elasticnet__l1_ratio': 0.9310}

Tuned ElasticNet R squared: 0.6441

2.3 Robust Regression

In [16]: from sklearn.linear_model import LinearRegression,

HuberRegressor, RANSACRegressor

from sklearn import datasets

import numpy as np

from matplotlib import pyplot as plt

The models we have investigated so far are, by construction, sensitive to outliers.
In standard statistics, an outlier can be defined in several ways, but in general, an
outlier is an example that differs significantly from other observations in the sample.
In particular, when it is reasonable to assume that the sample comes from a Normal
distribution, a popular way to detect outliers is by means of the empirical rule, which
basically says that approximately 68% of the observations lies between one standard
deviation σ from the mean. With this idea, we typically identify outliers as examples
which are extreme events in this distribution, say above ±3σ.
But why are linear models sensitive to outliers? All the methods we have inves-
tigated so far minimize an objective function which is based on the residual sum
of squares, and therefore every single point in the fit contribute to this objective
cost function. To overcome to this potential problem, Robust Regression provides

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 53 — #71
�

�

�

�

�

�

2.3. ROBUST REGRESSION 53

a valide alternative to standard linear models, and are particularly suggested when
we suspect to have either outliers in the sample or heteroscedasticity in the model.
In particular, since outliers tend to significantly impact the OLS fitting estimation
procedure by affecting the slope of the fitting curve, Robust Regression models, in-
stead, reduce the influence of outliers, making easier the outliers detection.
Here, we will introduce a couple methods that allow the fit of robust regression,
namely the Huber Regression and the RANdom SAmple Consensus (RANSAC),
poposed by Huber (1964) and Fischler and Bolles (1981), respectively. The interested
reader might refer to the book by Andersen (2008) for further details and different
methodologies on this issue.

Figure 2.5 Empirical rule in action: outliers notably are identified as extreme events
in this distribution.

2.3.1 Huber Regression

This method was proposed by Peter Huber in 1964, and it extends the stadard OLS
by introducing a loss that is less sensitive to outliers when the raw output model
(i.e. the difference between the observed and predicted value) is too large. In partic-

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 54 — #72
�

�

�

�

�

�

54 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

ular, this is achieved by introducing a loss that is a piecewise function that optimizes
either the squared loss or absolute loss for the samples based on a parameter, de-
noted by ε, which basically controls the number of outliers impacting the fit. More
formally, we wish to minimize the following cost function:

min
β

n

∑
i=1

L (yi, f (xi))

where

L(y, f (x)) =

⎧⎨
⎩(y − f (x))2 if |y − f (x)| < ε

2 · ε · |y − f (x)| otherwise

Hence, the Huber loss function is squared for small prediction errors, and linear for
larger values, which are likely to occur when outliers are observed. This is shown
in Figure 2.6. From a statistical point of view, this estimator belongs to the class of
M-estimators, which is a way to identify Maximum Likelihood Estimators.

In [17]: plt.figure(figsize=(8,5))

data = np.linspace(-20, 20)

huber_loss = plots.huber_loss(data)

squared_loss = 0.5 * data ** 2

plots.plot_loss_(data, huber_loss, squared_loss,

'Huber Loss', 'Squared Loss',

'Huber $\epsilon=3$', 'OLS')

For the sake of illustration, let’s try to fit a simple OLS model on a dataset with out-
liers. As shown in Figure 2.7, the estiamted model is pulled down by the bunch of
outliers, shown in the east direction of the plot. Here, we apply twice the customized
function called fit_huber, which basically fits a Huber Regressor and returns the es-
timated regression model. We see, again from Figure 2.7, that an ε → 1 produces a
model that forgets the outliers, wherever the model tends to get closer to the OLS
estimator as this parameter gets bigger.

In [18]: def fit_Huber(X,y,epsilon):

huber = HuberRegressor(epsilon=epsilon)

huber.fit(X, y)

coef_huber = huber.coef_ *X + huber.intercept_

return coef_huber

def fit_OLS(X,y):

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 55 — #73
�

�

�

�

�

�

2.3. ROBUST REGRESSION 55

Figure 2.6: Different behaviour of the Squared vs Huber Loss for increasing values
in the model prediction residuals.

lr = LinearRegression()

lr.fit(X, y)

coef_lr = lr.coef_ *X + lr.intercept_

return coef_lr

In [19]: X, y, coef = datasets.make_regression(n_samples=800,

n_features=1,

n_informative=1,

noise=10, coef=True,

random_state=0)

n_outliers = 50

X[:n_outliers] = 3 + 0.5*np.random.normal(size=(n_outliers,1))

y[:n_outliers] = -3 + 10*np.random.normal(size=n_outliers)

ols = fit_OLS(X,y)

huber1 = fit_Huber(X,y,epsilon=1.5)

huber2 = fit_Huber(X,y,epsilon=3)

In [20]: plt.figure(figsize=(8,5))

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 56 — #74
�

�

�

�

�

�

56 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

Figure 2.7: Fitting of a standard OLS and Huber Regression in the presence of out-
liers.

plt.scatter(X,y,color='yellowgreen', marker='.')

plt.plot(X, ols, label='Linear regressor',

color='gold', linestyle='solid', linewidth=2)

plt.plot(X, huber1, label="Huber loss, $\epsilon=1.5$",

color='green', linestyle='dashed', linewidth=2)

plt.plot(X, huber2, label="Huber loss, $\epsilon=3$",

color='red', linestyle='dotted', linewidth=2)

plt.legend(loc='upper left')

plt.xlabel("Input")

plt.ylabel("Target")

plt.show()

2.3.2 RANSAC

RANSAC is not properly a statistical model but an iterative algorithm, developed in
1981, which turns out to be extremely consistent to outliers. It basically divides the
available data into two different subsets, namely outlier and inlier. The latter subset
is also denoted as the hypothetical inliers. The hypothetical inliers are used to fit the
model, whereas the former group is then used to compute the residuals errors. All

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 57 — #75
�

�

�

�

�

�

2.3. ROBUST REGRESSION 57

the points that stick to the model prediction are grouped to form the consensus set.
RANSAC algorithm continues iterating until the consensus set is large enough for
the fitting to be consistent with respect to outliers. The following snippet contains a
custom function, called fit_RANSAC that returns the predicted model: results of the
fitting on this synthetic dataset is shown in Figure 2.8.

In [21]: def fit_RANSAC(X,y):

"""

This Function fits a RANSAC Regressor and returns

the (best) fitted model, as well as the ordered X.

The function also returns the set of inliers and

outliers on which the model was fitted"""

rc = RANSACRegressor()

rc.fit(X, y)

yhat = rc.predict(X)

pred = rc.estimator_.coef_*X + rc.estimator_.intercept_

return pred

ransac=fit_RANSAC(X,y)

In [22]: plt.figure(figsize=(8,5))

plt.scatter(X,y,color='yellowgreen', marker='.')

plt.plot(X, ols, label='Linear regressor',

color='gold', linestyle='solid', linewidth=2)

plt.plot(X, huber1, label="Huber loss, $\epsilon=1.5$",

color='green',linestyle='dotted', linewidth=2)

plt.plot(X, ransac,label='RANSAC regressor',

color='cornflowerblue', linestyle='dashed', linewidth=2)

plt.legend(loc='upper left')

plt.xlabel("Input")

plt.ylabel("Target")

plt.show()

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 58 — #76
�

�

�

�

�

�

58 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

Figure 2.8: Huber vs RANSAC Regression (under the OLS baseline).

2.4 Logistic Regression

The difference between regression and classification problems is that in the former,
the real focus is on the estimation of a continuous response, while in the latter, we
are just interested in the sign of the prediction, that is if a specific example belongs
to a class or not. In particular, we are interested in how well your model performs
on prediction. We want to optimize this procedure by finding β (and b in case of
presence of intercept) that minimizes the number of missclassification. But what
do we mean with missclassification? In terms of loss functions, regression models
typically minimize the squared errors, but if we assume that the target value is one
(as in binary classification), then such quadratic loss penalizes large deviations from
it. This argument is not appealing for classification: being close to the true value
does not mean anything in classfication problems, since we are interested in correctly
classifying the test examples in the correct class.
We could think of using the so-called 0 − 1 loss, which takes the sum of incorrect
missclassification. Given an example, if we correctly predict, then the loss is zero,
otherwise is one. Unfortunately, such function is hard to minimize (i.e. it is not
convex and even not continuous), so we might think of using a smoother version
of such loss function, which is used in logistic regression, called log-loss function,

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 59 — #77
�

�

�

�

�

�

2.4. LOGISTIC REGRESSION 59

defined as
n

∑
i=1

log
(

exp(−yi βT xi) + 1
)

2.4.1 Why Logistic Regression is Linear?

In any binary classification problem, the aim is to predict a binary outcome y = {0, 1}
given a set of independent features. When a binary outcome variable is modeled
using logistic regression, it is assumed that the logit transformation of the outcome
variable has a linear relationship with the predictor variables. To see this, we could
think of using ŷ = βTx + b as a predictor of y. This could be a reasonable choice,
especially when the outcome is continuous, that is ŷ ∈ (−∞, ∞). However, in binary
classification the outcome is discrete, that is y = {0, 1}, and so choosing such (linear)
function to predict y is not good for our purposes. However, we could think of
applying the logistic function (also called sigmoid function), which takes any real
input t ∈ R, and outputs a value between [0, 1], that is

σ (t) =
1

(1 + e−t)

Since we want to predict which class the example belongs to, based on the observed
features, we could think of using a linear combination of the features as classifier,
that is βTx. Then, the sigmoid function becomes

P (Y = 1) = σ
(

βTx
)
=

1(
1 + e−βTx

)

Thanks to this function, we are able to map ŷ from (−∞, ∞) to [0, 1], and to give a
probabilistic interpretation to any binary classification problem.
In Logistic Regression, we want P (Y = 1) to be high, so we need to choose β so that
it minimizes the log-loss function on the training dataset, that is

min
β∈Rp

−
n

∑
i=1

log
(

exp(−yi βT xi) + 1
)

Hence, Logistic Regression is linear because the outcome depends on the raw output
model, that is βTx, and produces a linear decision surface for each value of x such

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 60 — #78
�

�

�

�

�

�

60 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

Figure 2.9: Theoretical Logistic Function, with threshold set to 0.5

that
1

1 + eβTx
= 0.5 ⇐⇒ βTx = 0

However, the logistic function is not linear at all. To see this, consider the inverse of
the logistic function, called the logit, which is the log of the odds ratio.
Consider the ratio of the probabilities with which a certain training example x be-
longs to the class y = 1 and to the class y = 0, that is

P (y = 1| x)
P (y = 0| x)

= eβTx

Then, taking the log on both sides yields to

log
(

P (y = 1| x)
P (y = 0| x)

)
= βTx

which illustrates that the logit - i.e. the log-odds or natural logarithm of the odds - is
equivalent to the linear regression expression.

2.4.2 Logistic Regression Predictions (Raw Model Output)
vs Probabilities (Sigmoid Output)

Logistic regression is useful when one wants to give a probabilistic interpretation of
the classification problem. Since the decision boundary is given by the plane βTx,

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 61 — #79
�

�

�

�

�

�

2.4. LOGISTIC REGRESSION 61

then, for a specific training example, if the raw model output is positive, then we
predict one, otherwise zero, that is

raw model output: βTx[i] > 0 ⇒ prediction class is 1

raw model output: βTx[i] < 0 ⇒ prediction class is 0

The sigmoid function squashes the raw model output in probabilities: the more we
move away from the boundaries, the more confident the prediction. Hence,

P (Y = 1| x) = σ
(

βTx
)
=

1(
1 + e−βTx

) =

⎧⎨
⎩≥ 0.5 ŷ = 1

< 0.5 ŷ = 0

This function just compute the probability of correctly classifying the traning exam-
ple, and hence we tend to use the Logistic Regression if one wants to get probabilities
rather than raw output model.

2.4.3 Logistic Regression in Python

In [23]: from egeaML import DataIngestion

from egeaML import classification_plots

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

from sklearn.metrics import roc_auc_score, roc_curve

In order to illustrate how Logistic Regression model works, we use the Diabetes
dataset, which is available on the repository of this book on GitHub. Let’s read the
data and store it into a pandas DataFrame. We then separate the target variable,
which is a dummy variable describing whether the disease was observed or not,
from the independent variables, and split them into train and test set. As usual, we
make use of the book-specific class DataIngestion.

In [24]: r = DataIngestion(df='diabetes.csv', col_target = 'diabetes')

data = r.load_data()

X = r.features()

y = r.target()

X_train, X_test, y_train, y_test = train_test_split(X,y, \

test_size=0.3, random_state=42)

Fitting a Logistic Regression Model is pretty straighforward in scikit-learn:

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 62 — #80
�

�

�

�

�

�

62 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

In [25]: lr = LogisticRegression()

lr.fit(X_train,y_train)

y_pred = lr.predict(X_test)

print('Prediction:', lr.predict(X_test)[1],\

lr.predict(X_test)[9],lr.predict(X_test)[25])

print('Raw Model Output X_test:', \

(lr.coef_@ X_test[1] + lr.intercept_),

(lr.coef_@ X_test[9] + lr.intercept_),

(lr.coef_@ X_test[25] + lr.intercept_))

Prediction: 0 1 1

Raw Model Output X_test: [-1.24489634] [0.73742309] [1.27685211]

We can obtain the hard probabilities in Logistic regression by applying the pre-
dict_proba() method. This function returns the probability of a given example be-
ing in a particular class; in other words, it returns a vector, where the first column
describes the probability the training example belongs to the first class, the second
column describes the probability the example belongs to the second class, and so
on (for multiclass problems). We implement this function in the first two training
examples, and the result is shown.

In [26]: lr.predict_proba(X_test)[:2]

Out[26]: array([[0.66557856, 0.33442144],

[0.77641514, 0.22358486]])

The classifier is reporting over 66% and 77% confidence probability being in the 0-
class for the first and second training example, respectively. This is consistent with
the prediction we obtained with the predict() method.

2.4.4 Model Performance Evaluation

In classification problems, we typically evaluate model performance with accuracy,
defined as the fraction of correct predictions. Without loss of generality, let us con-
sider a binary classification problem. To evaluate the performance of the choosen
model, we typically resort to the confusion matrix, which is shown in Figure 2.10.
More formally, the accuracy on the test set of the trained model is obtained as

accuracy =
TP + TN

TP + TN + FP + FN

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 63 — #81
�

�

�

�

�

�

2.4. LOGISTIC REGRESSION 63

where TP + TN is the sum of the diagonal matrix, and TP is called True Positive and
TN is called True Negative. An example is said to be a

• True Positive if it was predicted as positive, given that it actually belongs to the
positive class;

• False Positive if it was predicted as positive, given that it actually belongs to the
0-class;

• False Negative if it was predicted as zero, given that it actually belongs to the
positive class;

• True Negative if it was predicted as zero, given that it actually belongs to the
0-class.

In general, we would like to minimize the number of False Negative (FN) and max-
imize the number of True Positive (TP), but that depends on the use case under
investigation. However, accuracy is not a good metric when the problem under in-
vestigation is characterized by imbalanced classes, that is when one class in much
more frequent than the other: this is, for instance, the case when one deals with
fraud detection. Indeed, fraudsters are (luckily) just a small, yet relevant, percentage
among the observed statistical units, and therefore the model might face some diffi-
culties in spotting a positive case among the many negative ones. See Section 1.3 for
details on how to deal with imbalanced datasets.
Hence, from the confusion matrix, we can retrive other metrics, such as the precision
defined as

precision =
TP

TP + FP

and the recall (also known as True Positive Rate, TPR) defined as

recall =
TP

TP + FN

Practically speaking, high precision transaltes into the observations of a high number
of TP and not many FP - i.e. not many fraudsters were classified as non fraudsters -
whereas high recall means most fraudsters were correctly predicted.

In [27]: labels = ['Healthy', 'Diabetes']

classification_plots.confusion_matrix(y_test, y_pred,

cmap="Blues",

xticklabels=labels,

yticklabels=labels)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 64 — #82
�

�

�

�

�

�

64 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

Figure 2.10: Confusion Matrix for the Diabetes Dataset on the Test set.

Note that there exists a relevant trade-off between precision and recall, whioch is
shown in Figure 2.11, produced by the book-specific function plot_precision_recall
in the following snippet:

In [28]: classification_plots.plot_precision_recall(y_test, y_pred)

To overcome to this problem, it is frequently used an alternative score, called F1
score, which is defined as the harmonic mean of precision and recall

F1-score = 2 · precision · recall
precision + recall

The three metrics can be shown altogether using the classification_report provided
by the scikit-learn library.

In [29]: print(classification_report(y_test, y_pred))

precision recall f1-score support

0 0.80 0.83 0.82 151

1 0.66 0.61 0.64 80

avg / total 0.75 0.76 0.76 231

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 65 — #83
�

�

�

�

�

�

2.4. LOGISTIC REGRESSION 65

Figure 2.11: Precision-Recall Curve on the Diabetes Dataset.

Classification reports and confusion matrices are great methods to quantitatively
evaluate model performances, especially when we deal with multiclass classifica-
tion problems. However, in many situations, we might prefer using the Receiver
Operating Characteristics (ROC) curve, which provides a way to visually evaluate
models. To construct the ROC curve, we will compute the predicted probabilities
from the predict_proba() method, and we will consider only the second column of
the array. This is because the first column of the predict_proba() method contains the
probability of being classified in the 0-class, while the second in the 1-class.

In [30]: y_pred_proba = lr.predict_proba(X_test)[:,1]

fpr, tpr, threshold = roc_curve(y_test, y_pred_proba)

plt.plot([0, 1], [0, 1], 'k--')

plt.plot(fpr, tpr)

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC Curve')

plt.show()

How can we interpret Figure 2.12? Given the ROC curve, can we extract a metric of
interest? The larger the area under the ROC, the better the model. In other words, say
you have a binary classifier that in fact is just randomly making guesses. It would

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 66 — #84
�

�

�

�

�

�

66 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

be correct approximately 50% of the time, and the resulting ROC curve would be
a diagonal line in which the True Positive Rate and False Positive Rate are always
equal. The area under this ROC curve would be 0.5. This area is notably denoted by
the acronym AUC, standing for Area Under the Curve. This is one way in which the
AUC is an informative metric to evaluate a model. If the AUC is greater than 0.5, the
model is better than random guessing. This is always a good sign.
We can also compute the AUC using cross validation, which is useful when we want
to be sure the result was not obtained by chance.

Figure 2.12: The Receiver operating characteristic (ROC) Curve

In [31]: roc_auc_score = roc_auc_score(y_test, y_pred_proba)

cv_scores =cross_val_score(lr,X,y,cv=10,scoring='roc_auc')

print('ROC AUC Score:{:.4f}'.format(roc_auc_score))

print('ROC AUC Score using Cross Validation: {:.4f}'.format(

np.mean(cv_scores)))

ROC AUC Score:0.8059

ROC AUC Score using Cross Validation: 0.8246

2.4.5 Regularization

In Logistic Regression, we apply an L2 regularization by default, in the same way
that Ridge does for regression. L1-Regularization is anyway possible, which is ap-

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 67 — #85
�

�

�

�

�

�

2.4. LOGISTIC REGRESSION 67

pealing for feature selection.
Differently from Ridge, we have an hyperparameter C = 1

α , so that smaller C means
more regularization. More regularization penalize large coefficients, which has the
effect of of making the training accuracy going down but improves the test accu-
racy. Also recall that L1 performs feature selection (some coefficients are set to zero),
whereas L2 shrinks coefficients to be smaller.
Regularization is useful in high dimensional space, and the Logistic regression prob-
lem can be rewritten (in terms of loss function) as

min
β∈Rp

−C
n

∑
i=1

log
(

exp(−yi βT xi) + 1
)
+ ||β||22 L2 − norm

min
β∈Rp

−C
n

∑
i=1

log
(

exp(−yi βT xi) + 1
)
+ ||β||1 L1 − norm

To fit a Logistic Regression model under the L1-penalty, we just need to add the
argument penalty equal to L1.

In [32]: lr_l1 = LogisticRegression(penalty='l1')

lr_l2 = LogisticRegression()

lr_l1.fit(X_train, y_train)

lr_l2.fit(X_train,y_train)

print(round(lr_l1.score(X_test,y_test),2))

print(round(lr_l2.score(X_test,y_test),2))

0.7446

0.7576

The above code shows two Logistic Regression models without specifying the regu-
larization parameter C. We implement GridSearchCV to look up for the best C which
produces the best score on the train set.

In [33]: c_space = np.logspace(-5, 8, 15)

param_grid = {'C': c_space,'penalty': ['l1', 'l2']}

logreg = LogisticRegression()

logreg_cv = GridSearchCV(logreg, param_grid, cv=5)

logreg_cv.fit(X_train,y_train)

print("Tuned Logistic Reg Parameters: {}".format(

logreg_cv.best_params_))

print("Best Train score is {}".format(

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 68 — #86
�

�

�

�

�

�

68 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

logreg_cv.best_score_))

print("Best Test score is {}".format(

logreg_cv.score(X_test,y_test)))

Tuned Logistic Reg Parameters: {'C': 3.727593720314938}

Best Train score is 0.7746741154562383

Best Test score is 0.7445887445887446

Tuned Logistic Reg Parameter: {'C': 31.622776601683793,'penalty': 'l2'}

Tuned Logistic Reg Accuracy: 0.7673913043478261

Note that in Logistic Regression, all points contribute to β: if you leave out any point
of your data, that will change the solution. However, that is not true for Support
Vector Machine (SVM), which is discussed in the following Section.

2.5 Linear Support Vector Machine

We talked about Logistic Regression, which is a linear classifier learned with a lo-
gistic loss function. Linear SVM are also linear classifiers but they use Hinge loss
instead of the log-loss. Broadly speaking, the log-loss is sometime viewed as the
smoothed version of the Hinge loss, and Figure 2.13 shows the difference between
the two losses: this was produced with the book-specific methos plot_loss from the
plots class.

In [34]: from egeaML import functions_utils,plots,classification_plots

from sklearn.datasets.samples_generator import make_blobs

import mglearn

from sklearn.svm import SVC

import numpy as np

In [35]: data = np.linspace(-3,3,1000)

utils = functions_utils(data)

logistic_loss = utils.logistic_loss()

hinge_loss = utils.hinge_loss()

plots.plot_loss(data, logistic_loss, hinge_loss

,'Logistic Loss', 'Hinge Loss'

,'Logistic', 'Hinge'

,xlim=[-3,3], ylim=[-0.05, 5])

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 69 — #87
�

�

�

�

�

�

2.5. LINEAR SUPPORT VECTOR MACHINE 69

Figure 2.13: Plots of common Classification Loss Functions: on the y-axis, we have
the loss, whereas on the x-axis we have the raw-model output.

They look very similar, but if a training example falls in the 0-loss Hinge region
(right), it doesn’t contribute to the fit. If we remove it, nothing will change; points
that, instead, are in the 1-loss region are called Support Vectors: we then say that Sup-
port Vectors are examples that are not in the flat part of the loss diagram, i.e. that
have no 0-loss.
In other words, support vectors are examples that are incorrectly classified or close
to the boundary. How close these points are to the boundary plane is controlled by
regularization strength: if an example is not a support vector, removing it has no
effect on the model. This is a key property of Support Vector Machines: just a few
points contribute to the solution, whereas in Logistic Regression, all points matter to
the fit because there is no 0-loss flat region in the loss.
Linear SVM looks for the hyperplane that maximizes the margins for linearly sepa-
rable data (and minimizes the number of missclassification in case we have overlap-
ping classes). The margin is defined as the distance from the boundary to the closest
points of each class. Mathematically, the aim is to choose β that minimize the Hinge
loss, that is

min
β∈Rp

[
C

n

∑
i=1

max
{

0, 1 − yiβ
Txi

}
+

||β||2
2

]

In order to minimize the Hinge loss, we need to have large values of decision func-
tion βTxi, which happens when points are far off on the correct side of the decision

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 70 — #88
�

�

�

�

�

�

70 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

boundary. This is saying that βT xi should have the same sign as yi, so if their prod-
uct is positive, then we get a loss of zero, else it increases linearly with βTx when the
product is negative. The smaller the decision function βT xi, the larger the loss.
In practice, the aim is to find the optimal decision hyperplane which is as far as pos-
sible from the data points of each category. In other words, we are looking for the
optimal separating hyperplane which maximizes the margin (between the training
points for class 1 and 0) and minimizes the missclassification (when the two classes
overlap in feature space).
Larger margins imply that a larger number of support vectors are considered in the
fit. More specifically, every example which is either

• inside the margins or

• every example that is outside the margins but missclassified

contribute to the solution, and these points are called support vectors. Note that the
size of the margins is basically the inverse of the length of β, so smaller values means
larger margins. Support vectors are therefore points which have non-zero loss and
close to the boundary.
We create a toy dataset using the scikit-learn function make_blobs: its argument cen-
ters controls the clusters to be created, that is centers= 2 will produce two different
clouds of points. We also plot the data: note that the argument s = 50 determines
the size of the balls, whereas c = y colors the balls according to the y values

In [36]: X, y = make_blobs(n_samples=100, centers=2,n_features=2,

random_state=3, cluster_std=1.1)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='winter')

plt.xlabel('Feature 0')

plt.ylabel('Feature 1')

plt.show()

When there is no overlapping between the two classes (as in the above case), SVM
aims to find the optimal decision boundary that maximizes the margin. In particular,
maximizing the margin is equivalent to minimizing the length of β, since the margin
is the inverse of the length of β.

In [37]: X_train, X_test, y_train, y_test = train_test_split(X,

y, test_size=0.3, random_state=42)

svc = SVC(kernel='linear')

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 71 — #89
�

�

�

�

�

�

2.5. LINEAR SUPPORT VECTOR MACHINE 71

Figure 2.14: Scatter Plot of the toy data used for the illustration of the SVM.

svc.fit(X_train, y_train)

pred = svc.predict(X_test)

print(svc.score(X_test, y_test))

1.0

We now show the decision boundaries obtained from the SVC, using the book-
specific function plot_svc_decision_function: this function identifies the decision
boundaries that maximizes the margins, as well as the support vectors.

In [38]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='winter')

classification_plots.plot_svc_decision_function(svc)

sv = svc.support_vectors_

sv_labels= svc.dual_coef_.ravel()>0

mglearn.discrete_scatter(sv[:,0], sv[:,1], sv_labels, s=10,

markeredgewidth=1.5)

plt.xlabel('Feature 0')

plt.ylabel('Feature 1')

plt.show()

This is the dividing line that maximizes the margins between the two sets of points.
Note that a few of the training points just touch the margin: these points are the
pivotal elements of this fit, that is the support vectors.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 72 — #90
�

�

�

�

�

�

72 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

Figure 2.15: Identification of the Decision Boundaries and Support Vectors.

In [39]: svc.support_vectors_

Out[39]: array([[-2.19135348, 3.0939319],

[0.13181535, 1.50196496],

[-1.99456657, 1.53111627]])

Regarding the fit, it is worth to notice that only the position of the support vectors
matters: any correctly classified point further from the margin does not modify the
fit. Technically, this is because these points do not contribute to the loss function
used to fit the model, so their position and value do not matter as long as they do
not cross the margin.
The dataset we have just used basically describes a case when data is linearly sepa-
rable, that is when a perfect decision boundary exists. But what if the data has some
amount of overlap? In such cases, SVM looks for the hyperplane that maximizes the
margin and minimizes the missclassification. For example, consider the data like the
one in Figure 2.16:

In [40]: X, y = make_blobs(n_samples=100, centers=2, random_state=0,

cluster_std=1.2)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='winter')

plt.show()

A possible strategy to use in this case is to introduce a penalty term, which allows
some points to fall out the margin, at the cost of penalizing them. The name soft-

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 73 — #91
�

�

�

�

�

�

2.6. BEYOND LINEARITY: KERNELIZED MODELS 73

Figure 2.16: Scatter Plot of a overlapping, two-classes, dataset.

margins comes from this penalization method. The hardness of the margin is con-
trolled by a tuning parameter, denoted by C, which is the inverse of α, used to denote
the regularization parameter in Linear Regression. There is an interesting aspect of
how the parameter C acts. Using low values of C will cause the algorithm to try
to adjust to the majority of data points, while using a higher value of C stresses the
importance of each individual data point. In other words,

• Under low regularization (i.e. for large C), the margins are tight, and points
cannot lie in it, and therefore few support vectors.

• Under high regularization (i.e. for smaller C,) the margins are softer, and there-
fore more support vectors, which influence the solution.

This is shown in the Figure 2.17, generated from the following snippet.

In [41]: classification_plots.plot_svc_regularization_effect(X=X,y=y,

kernel='linear',cmap='winter')

The interest reader can refer to the book by Muller and Guido (2017) to deepen her
curiosity on the regularization effect on the decision boundaries.

2.6 Beyond Linearity: Kernelized Models

Where SVM becomes extremely powerful is when it is combined with kernels. To
motivate the use of kernels, let us look at some data that is not linearly separable.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 74 — #92
�

�

�

�

�

�

74 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

Figure 2.17: Effect on the regularization on the margins.

In [42]: from sklearn.datasets.samples_generator import make_circles

X, y = make_circles(100, factor=.1, noise=.1)

clf = SVC(kernel='linear').fit(X, y)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='winter')

classification_plots.plot_svc_decision_function(clf,

plot_support=False)

plt.show()

Figure 2.18: A Linear Hyperplane with non-linear data is not feasible.

Using a linear hyperplane to separate these two classes is not feasible. However, we
could think of projecting the data into a higher dimension such that a linear sepa-
rator would be sufficient. How can we achieve this? By simply adding a new set
of features, obtained from the original ones. For instance, instead of representing

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 75 — #93
�

�

�

�

�

�

2.6. BEYOND LINEARITY: KERNELIZED MODELS 75

each data point as a two-dimensional point, (x0, x1), we now represent it as a three-
dimensional point, (x0, x1, x2

1). The message here is that adding nonlinear features to
the representation of our data can make linear models much more powerful. How-
ever, often we do not know which features to add, and adding many features (like all
possible interactions in a 100-dimensional feature space) might make computations
very expensive.
Luckily, there is a clever mathematical trick that allows us to learn a classifier in a
higher-dimensional space without actually computing the new, possibily very large
representation. This is known as kernel trick, and it works by directly computing the
distance (more precisely, the scalar products) of the data points for the exapanded
feature representation, without ever actually computing the expansion.
There are two ways to map the data into a higher-dimensional space that are com-
monly used with SVM:

• the polynomial kernel, which computes all possible polynomials up to a certain
degree of the original features, such as (x2

0 · x5
1);

• the radial basis function (RBF) kernel, also known as Gaussian kernel: intu-
itively, it considers all possible polynomials of all degress, but the importance
of the features decreases for higher degrees.

In [43]: clf = SVC(kernel='rbf', C=1E6)

clf.fit(X,y)

plt.scatter(X[:,0],X[:,1],c=y,s=50, cmap='winter')

classification_plots.plot_svc_decision_function(clf)

plt.scatter(clf.support_vectors_[:,0],

clf.support_vectors_[:,1],

s=300,lw=1, facecolors='none')

sv = clf.support_vectors_

sv_labels= clf.dual_coef_.ravel()>0

mglearn.discrete_scatter(sv[:,0], sv[:,1], sv_labels,

s=10, markeredgewidth=1.5)

plt.xlabel('Feature 0')

plt.ylabel('Feature 1')

plt.show()

Using this kernelized SVM with radial basis function, we have learned a suitable
nonlinear decision boundary for this dataset.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 76 — #94
�

�

�

�

�

�

76 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

Figure 2.19: Fitting a SVM to non-linear data using the Kernel Trick produces non-
linear decision boundaries.

2.6.1 Into the Hood of the Kernel Trick

Suppose that at the optimum, the β can be written as linear combination of the data
points, that is

β =
n

∑
i=1

αi xi

where the α’s are called the dual coefficients, and they are non-zero only for points
which contribute to the solution. There is an important relationship between α’s and
C such that αi ≤ C for each training example i, that is C limits the influence of each
data point. Note that

ŷ = σ(βTx) ⇒ ŷ = σ

(
∑

i
αi

(
xT

i x
))

The idea of this rewriting is that now the solution and the prediction problem can be
expressed in terms of the inner product xT

i x. Suppose we want to do some polyno-
mial expansion, that is allowing some interactions among the original features, with
some feature function φ(·); then,

ŷ = σ

(
∑

i
αi

(
xT

i x
))

⇒ ŷ = σ

(
∑

i
αi

(
φ (xi)

T φ (x)
))

Instead of coming up with some feature function that are good to separate the data

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 77 — #95
�

�

�

�

�

�

2.6. BEYOND LINEARITY: KERNELIZED MODELS 77

points (not so easy), we could try to come up with such inner product.
In other words, whenever we write down a function that is positive definite and
symmetric in two vectors xi and xj, there always exists a function φ(·) so that k

(
xi, xj

)
is the inner product in the feature space φ (xi)

T φ (x). More generally, for any kernel
k(·):

ŷ = σ

(
∑

i
αik (xix)

)

This translate, in practice, as follows: if we compute explicit polynomials from our
100-dimensional original dataset, and we perform all the possibile interaction among
them, then my new dataset become (n · 100)d, where d is the degree of the polyno-
mial, and n is the number of samples in the orginal data. This is not really feasible, so
if we just use the kernel trick, we need to compute the inner product in the training
data. For example:

• x = (1, 2, 3) and y = (4, 5, 6);

• φ(x) = x2 = (1, 2, 3, 2, 4, 6, 3, 6, 9);

• φ(y) = y2 = (16, 20, 24, 20, 25, 30, 24, 30, 36);

• φ (x)T φ (y) = (16 + 40 + 72 + 40 + 100 + 180 + 72 + 180 + 324) = 1024

If, instead, we use the kernel trick, then k(x, y) = (xTy)2 = (4 + 10 + 18)2 = 322 =

1024

2.6.2 Practical Classification Example: Face Recognition

It’s time to see a useful application of SVM to a very practical, yet cru-
cial, problem in computer vision: face recognition. This example is publ-
icy available in either the repository of the well-written book by Vanderplas
(2016) or in the scikit-learn website at the following stable link: https://scikit-
learn.org/stable/auto_examples/applications/plot_face_recognition.html. Since it
is a very good example, it is worth to be mentioned here as well.
We will use a very famous dataset, called Labelled Faces in the Wild, which
consists of 1288 faces of famous people, and it is available at http://vis-
www.cs.umass.edu/lfw/lfw-funneled.tgz. However, note that it can be easily im-
ported via scikit-learn from the datasets class with the following command:

In [44]: from sklearn.datasets import fetch_lfw_people

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 78 — #96
�

�

�

�

�

�

78 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

The interested reader should also note that the scikit API provides another faces
dataset, called the Olivetti faces dataset, which consists of ten different images for
each subject, taken with different facial expressions (open / closed eyes, smiling /
not smiling) and facial details (glasses / no glasses). This dataset can also be used
for a similar applications as the one shown in this Section.

In [45]: faces = fetch_lfw_people(min_faces_per_person=60)

Each image consists of 1850 features: we could proceed by simply using each of them
in the model, but it is more useful to use some sort of preprocessor to extract more
meaningful features; here we will use Principal Component Analysis (PCA), which
was described in Section 1.4 to extract 150 fundamental components to feed into our
Support Vector Machine Classifier. To do so, we jointly use the preprocessor and the
classifier into a single pipeline:

In [46]: from sklearn.svm import SVC

from sklearn.decomposition import PCA

from sklearn.pipeline import make_pipeline

from sklearn.model_selection import train_test_split

pca = PCA(n_components=150, whiten=True, random_state=42,

svd_solver='randomized')

svc = SVC(kernel='rbf', class_weight='balanced')

model = make_pipeline(pca, svc)

X_train,X_test,y_train,y_test = train_test_split(faces.data,

faces.target, test_size=0.3, random_state=42)

To get better performances, we can use a grid search cross-validation to explore ran-
dom combinations of parameters. Here we will adjust C, which controls the margin

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 79 — #97
�

�

�

�

�

�

2.6. BEYOND LINEARITY: KERNELIZED MODELS 79

hardness, and γ, which controls the size of the radial basis function kernel, and de-
termine the best model.

In [47]: from sklearn.model_selection import GridSearchCV

param_grid = {'svc__C': [1,5,10,50],

'svc__gamma': [0.001,0.0005,0.01,0.1]}

grid = GridSearchCV(model,param_grid=param_grid, cv=10)

grid.fit(X_train,y_train)

print(grid.best_params_)

print(grid.best_score_)

{'svc__C': 5, 'svc__gamma': 0.001}

0.829268292683

We now predict on the test set, using the best model we have just spotted. In the
next snippet, we also show a bunch of picture taken from the test set, labelled by the
target: if their color is red, then the model missclassified the image.

Figure 2.20: Predicted sample names. Incorrect labels are shown in red.

In [48]: model = grid.best_estimator_

yfit = model.predict(X_test)

In [49]: fig, ax = plt.subplots(4, 6)

for i, axi in enumerate(ax.flat):

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 80 — #98
�

�

�

�

�

�

80 CHAPTER 2. LINEAR MODELS FOR MACHINE LEARNING

axi.imshow(X_test[i].reshape(62, 47), cmap='bone')

axi.set(xticks=[], yticks=[])

axi.set_ylabel(

faces.target_names[yfit[i]].split()[-1],

color='black' if yfit[i] == y_test[i]

else 'red')

fig.suptitle('Predicted Names; Incorrect Labels in Red',size=14)

plt.show()

Out of this small sample, our optimal estimator mislabeled only a few single face
(Bush’s face was mislabeled three times). We can get a better sense of our estimator’s
performance using the classification report, which lists recovery statistics label by
label, as well as we also display the confusion matrix between these labelled classes.
This is shown in Figure 2.21, which helps us get a sense of which labels are likely to
be confused by the estimator. The performances are pretty good, which shows the
SVC is a good estimator for this kind of data.

In [50]: labels = list(faces.target_names)

classification_plots.confusion_matrix(y_test, yfit,

cmap='YlGnBu',

xticklabels=labels,

yticklabels=labels)

In [51]: print(classification_report(y_test,yfit,target_names=labels))

precision recall f1-score support

Ariel Sharon 0.68 0.88 0.77 17

Colin Powell 0.80 0.86 0.83 84

Donald Rumsfeld 0.67 0.89 0.76 36

George W Bush 0.91 0.77 0.83 146

Gerhard Schroeder 0.70 0.75 0.72 28

Hugo Chavez 0.89 0.63 0.74 27

Junichiro Koizumi 0.79 0.94 0.86 16

Tony Blair 0.72 0.76 0.74 51

accuracy 0.80 405

macro avg 0.77 0.81 0.78 405

weighted avg 0.81 0.80 0.80 405

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 81 — #99
�

�

�

�

�

�

2.6. BEYOND LINEARITY: KERNELIZED MODELS 81

Figure 2.21: Model Performance on the Face Dataset using PCA and SVM together.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 82 — #100
�

�

�

�

�

�

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 83 — #101
�

�

�

�

�

�

Chapter 3

Beyond Linearity: Ensemble
Methods for Machine Learning

3.1 Introduction

A popular way to tackle non-linearity in the available data is to use Tree based learn-
ing algorithms, which are considered one of the best family of supervised learning
methods. Decision Tree algorithms belongs to this family of models, which have
gained a remarkable popularity thanks to their predictive power, stability and ease
of interpretation. Decision Tree algorithms are referred to as CARTs (Classification
and Regression Trees), which is a term proposed by Breiman et al. (1984).
Classification tree analysis is employed when the predicted outcome is the discrete
class to which the data example belongs to. Regression tree analysis, instead, is used
when the predicted outcome is a continuous variable (e.g. the price of a house, or a
patient’s length of stay in a hospital). Trees in both regression and classification have
many similarities, but they also have many differences, such as the procedure used
to determine where to split the tree. More specifically, classification trees split the
data based on the concept of purity of the node, and notably we aim at maximizing
the decrease of impurity for each split, whereas for regression tasks, we typically fit
the model to the set of explanatory variables, giving less attention to those features
where their inclusion increase the prediction error for those nodes. In this Chap-
ter, we are going to investigate mainly ensemble and boosting algorithms, trying to
highlight pros and cons for each single proposed method.

83

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 84 — #102
�

�

�

�

�

�

84 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

3.2 Ensemble Methods

CARTs have many advantages: they are easy to understand, and their output is easy
to interpret. In addition, CARTs are easy to use and their flexibility gives them an
ability to describe non-linear dependencies between features and labels.
Furthermore, compared to a linear model, where preprocessing plays a key role in
the dataset creation phase (and therefore in training performance), CARTs do not
need a lot of feature preprocessing of the features before feeding them into the model
as the training set.
Unfortunately, CARTs have also many limitations: a classification tree, for example,
is only able to produce orthogonal decision boundaries. CARTs are also very sen-
sitive to small variations in the training set: notably, when an example is removed
from the training set, the estimated parameters may drammatically change (see the
book by Zumel and Mount (2014) for further details).
CARTs also suffer from high variance when they are trained without constraints. In
such cases, they might overfit the training set. Recall that overfitting describes the
situation in which the choosen model describes the training data well, but it does
not generalize to unseen data, which is the objective of statistical learning.
A solution that takes advantage of the flexibility of CARTs while reducing their ten-
dency to memorize noise is Ensemble Learning. The key idea is that different models,
such as Logistic Regression or a Support Vector Classifier, or even a Decision Tree,
are trained on the same dataset, and each model makes its own prediction; a meta-
model then aggregates the predictions of individuals models and outputs a final
prediction. The result is that the final prediction is more robust and less prone to
errors than each individual model.
Let us now take a look of an Ensembling Method called Voting Classifier: the en-
semble here consists of M different classifiers making the predictions Pi ∈ {0, 1} for
i = 1, . . . , M. The meta-model outputs the final prediction by hard voting, which
basically consists in the most frequent output score produced by the ensemble of
classifiers.
To show how Voting Classifier works in Python, we use the Heart Disease Dataset,
available in the book-specific GitHub repository.

In [1]: import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from egeaML import DataIngestion, Preprocessing, model_fitting

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 85 — #103
�

�

�

�

�

�

3.2. ENSEMBLE METHODS 85

from egeaML import xgboost, classification_plots

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.ensemble import VotingClassifier, BaggingClassifier

from sklearn.ensemble import RandomForestClassifier,

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split,GridSearchCV

from sklearn.metrics import classification_report, accuracy_score

from sklearn.metrics import mean_squared_error as MSE

Using TensorFlow backend.

We use the DataIngestion book-specific class to load the data. Let us load the features
and the target separately, and then split the data into train and test set.

In [2]: di = DataIngestion(df='heart.csv', col_to_drop= ['Thal'],

col_target='AHD')

X = di.features()

y = di.target().apply(lambda x: 1 if x=='Yes' else 0)

X_train, X_test, y_train, y_test = train_test_split(X,y,

stratify=y, test_size=0.3, random_state=42)

X_train = X_train.reset_index(drop=True)

y_train = y_train.reset_index(drop=True)

X_test = X_test.reset_index(drop=True)

y_test = y_test.reset_index(drop=True)

train = pd.concat([X_train,y_train],axis=1)

test = pd.concat([X_test,y_test],axis=1)

We print the first five examples, running the following snippet:

In [3]: pd.set_option('display.max_columns', 100)

train.head()

Out[3]: Age Sex ChestPain RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak \
0 52 0 nonanginal 136 196 0 2 169 0 0.1
1 59 1 nonanginal 150 212 1 0 157 0 1.6
2 35 1 nontypical 122 192 0 0 174 0 0.0
3 58 1 asymptomatic 128 259 0 2 130 1 3.0
4 71 0 nontypical 160 302 0 0 162 0 0.4

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 86 — #104
�

�

�

�

�

�

86 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

Slope Ca AHD
0 2 0.0 0
1 1 0.0 0
2 1 0.0 0
3 2 2.0 1
4 1 2.0 0

Now, we see there is a categorical column, i.e. ChestPain, which describes the pain
suffered by the patient. To train a model, we have to do some preprocessing, which
requires to have all numerical columns in our dataframe before ingesting it into the
model. We make use of the book-class Preprocessing to perform this fundamental
step.

In [4]: cat_cols = ['ChestPain']

df_train= Preprocessing(columns = cat_cols,X=train).dummization()

df_test = Preprocessing(columns = cat_cols,X=test).dummization()

X_train_clean = df_train.drop(['AHD'],axis=1)

y_train_clean = df_train['AHD']

X_test_clean = df_test.drop(['AHD'],axis=1)

y_test_clean = df_test['AHD']

In [5]: X_train_clean.head()

Out[5]: Age Sex RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak Slope \

0 52 0 136 196 0 2 169 0 0.1 2

1 59 1 150 212 1 0 157 0 1.6 1

2 35 1 122 192 0 0 174 0 0.0 1

3 58 1 128 259 0 2 130 1 3.0 2

4 71 0 160 302 0 0 162 0 0.4 1

Ca ChestPain_asymptomatic ChestPain_nonanginal \

0 0.0 0 1

1 0.0 0 1

2 0.0 0 0

3 2.0 1 0

4 2.0 0 0

ChestPain_nontypical ChestPain_typical

0 0 0

1 0 0

2 1 0

3 0 0

4 1 0

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 87 — #105
�

�

�

�

�

�

3.2. ENSEMBLE METHODS 87

We now fit a series of independent models, and see which one better performs with
the given data. In particular, we are going to fit a

• Logistic Regression Model;

• Decicion Tree Classifier;

• Support Vector Classifier

and investigate the individual performances on the test set. We will make use of
the book-class model_fitting, which is available in the egeaML library. We specify
the models before calling the method fitting_models() of the class model_fitting, and
then the user is asked again to specify the names of the models, so that the machine
is going to fit the data to the desired models, and test their accuracy on unseen data.
As an exercise, one could extend it to a different set of models, as well as generalizing
it as a dynamic method for fitting ML models, but that task is beyond the scope of
this book.

In [6]: lr = LogisticRegression()

dt = DecisionTreeClassifier()

svc = SVC()

In [7]: fitting = model_fitting(n=3)

models_dict = fitting.models_def(

model_one ='Logistic Regression', abb1='lr',

model_two = 'Decision Tree Clf', abb2 = 'dt',

model_three = 'Support Vector Clf', abb3='svc')

models_dict

Out[7]: {'Logistic Regression': 'lr',

'Decision Tree Clf': 'dt',

'Support Vector Clf': 'svc'}

In [8]: models_ = model_fitting(n=3).get_models(

models_dict=models_dict,

model_one='LogisticRegression',

model_two='DecisionTreeClassifier',

model_three='SVC')

In [9]: model_fitting(n=3).fitting_models(models= models_,

X_train=X_train_clean,

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 88 — #106
�

�

�

�

�

�

88 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

y_train=y_train_clean,

X_test=X_test_clean,

y_test=y_test_clean)

Logistic Regression : 0.8242

Decision Tree Clf : 0.7582

Support Vector Clf : 0.5275

It looks like the Logistic Regression model is the one which performs the best with
the given data. As usual, this might be given by chance, so we could think of using
the Voting Classifier we have discussed to obtain a score that takes into account all
the fitted models.

In [10]: clfs = [('Logistic Regression', lr),

('Decision Tree', dt),

('Support Vector Classifier', svc)

]

vc = VotingClassifier(estimators=clfs)

vc.fit(X_train_clean,y_train_clean)

y_pred = vc.predict(X_test_clean)

score = format(accuracy_score(y_test_clean,y_pred), '.4f')

print("Voting Classifier : {}".format(score))

Voting Classifier : 0.8132

Not surprisingly, the Voting Classifier performs as good as the Logistic Regression and
performs better than the Decision Tree, outperforming the Support Vector Classifier.

3.2.1 Boostrap Aggregation

We now introduce a family of models that goes under the name of Boostrap Aggrega-
tion, also known as Bagging, which is a way to reduce training variance, and to avoid
overfitting.
The Voting Classifier is an ensemble of models that are fit to the same training set
using different algorithms, and that a test example is feedeed into each model, but
the final prediction is obtained by majority voting.
In Boostrap Aggregation, instead, the ensemble is formed by models that share the
same baseline algorithm, but differently from the Voting Classifier, where each model

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 89 — #107
�

�

�

�

�

�

3.2. ENSEMBLE METHODS 89

is trained on the whole training set, here each model is trained on a different subset
of the data, yet keeping all the features.
The ideal scenario to reduce the variance - and to increase the prediction accuracy
- is to take many different training sets from the available dataset, build a separate
model for each of them, and averaging the resulting predictions. Notably, however,
we do not have access to multiple training sets, and therefore we typically resort
to boostrap. Bostrapping means taking repeated random samples with replacement
from the training dataset: this allows one to fit a model on a series of training sets
that share a common base.
For a given test example, we record the class predicted by each of the model and the
overall prediction is the most commonly occurring class among these predictions.
According to the problem we are facing on, the final prediction is going to be pro-
duced accordingly. On the one hand, when dealing with classifications, the final
prediction is obtained by majority voting. On the other hand, the final prediction is
the average of the predictions made by the individual models, forming the ensemble
when we focus on Regression analysis.
We firstly fit a Decision Tree Classifier without specifying parameters.

In [11]: dt = DecisionTreeClassifier()

dt.fit(X_train_clean,y_train_clean)

y_pred_bc = dt.predict(X_test_clean)

score = accuracy_score(y_test_clean,y_pred_bc)

print('Test Accuracy of: ' + str(score))

Test Accuracy of: 0.7582417582417582

Note that if you run the above code in your console, you might obtain a different
result: this is because bagging is based on random boostrap of the training set. Since
hyperparameters are not learned from the data, but must be tuned, we perform a
GridSearch on two hyperparameters of the Decision Tree, that is max_depth, and
min_samples_leaf, which describes the maximum depth of the tree and the minimum
percentage of samples per leaf, respectively. In this way, we are going to search for
the set of optimal hyperparameters that identifies the optimal learning algorithm
and that allows to obtain the best model performances.

In [12]: grid = {'max_depth':[3,4,5,6],

'min_samples_leaf':[0.5,1,3,5,8,10]}

dt_ = GridSearchCV(dt, grid, scoring='accuracy',

cv=5,n_jobs=-1, verbose=0)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 90 — #108
�

�

�

�

�

�

90 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

dt_.fit(X_train_clean,y_train_clean)

y_pred_bc = dt_.predict(X_test_clean)

score = accuracy_score(y_test_clean,y_pred_bc)

print('Test Accuracy of: ' + str(score))

print('Best params: {}'.format(dt_.best_params_))

Test Accuracy of: 0.7802197802197802

Best params: {'max_depth': 4, 'min_samples_leaf': 5}

Note that setting n_jobs equal to -1 has the effect that all the available cpu cores are
used in the computation phase. If we implement Bagging technique on the data, we
see that it slightly performs better than the base estimator dt we have defined before,
that is the Decision Tree Classifier.

In [13]: dt = DecisionTreeClassifier(max_depth=4, min_samples_leaf=5)

bc = BaggingClassifier(base_estimator =dt_, n_estimators=300,

n_jobs=-1)

bc.fit(X_train_clean,y_train_clean)

y_pred_bc = bc.predict(X_test_clean)

score = accuracy_score(y_test_clean,y_pred_bc)

print('Test Accuracy of: ' + str(score))

Test Accuracy of: 0.7912087912087912

3.2.2 Out-of-Bag Estimation

Recall that in Bagging, some instances might be sampled several times for one model.
On the other hand, other instances may not be sampled at all. On average, for each
model, 67% of the training examples are sampled the remaining 33% constitute what
is known as the OOB instances: these can be used to estimate the performance of the
ensemble without the need for cross-validation, and hence reducing the efforts in
obtaining the best model.
To do that, we will fit a BaggingClassifier by specifying the argument oob_score as
True: this allows to evaluate the OOB-accuracy of the Bagging Classifier after the fit
on the training.

In [14]: dt = DecisionTreeClassifier(max_depth=4, min_samples_leaf=5)

bc = BaggingClassifier(base_estimator =dt_, n_estimators=300,

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 91 — #109
�

�

�

�

�

�

3.3. RANDOM FORESTS 91

oob_score=True, n_jobs=-1)

bc.fit(X_train_clean,y_train_clean)

y_pred_bc = bc.predict(X_test_clean)

score = accuracy_score(y_test_clean,y_pred_bc)

oob_score = bc.oob_score_

print('Test Accuracy of: ' + str(score))

print('OOB: ' + str(oob_score))

Test Accuracy of: 0.7912087912087912

OOB: 0.8066037735849056

They are slightly different: this clearly shows how OOB-evaluation can be an effi-
cient technique to obtain the performance estimate of a bagged-ensemble on unseen
data without performing cross-validation.

3.3 Random Forests

Random Forests is an ensemble method that uses a Decision Tree as a base estimator.
It was proposed by Breiman in 2001, and since then, he has been extremely used
by researchers and practitioners. At the time this book was written, that paper had
more than 26,000 citations.
In Random Forests, each estimator is trained on a different boostrap sample hav-
ing the same size as the training set. This model introduces further randomization
than Bagging when training each of the base estimators. Let p be the total number
of available features in the training dataset. In classification problems, when each
tree is trained, only

√
p features are used at each node without replacement. For Re-

gression, instead, only p
3 features are used at each node. The node is then split using

the sampled feature (among the choosen ones) that maximizes information gain. To
make a new prediction on a new point, then we take the majority vote (in case of
classification) or we average the scoring results (in case of regression).

3.3.1 Random Forests Classifier

In [15]: rf = RandomForestClassifier(n_estimators=30)

rf.fit(X_train_clean,y_train_clean)

y_pred = rf.predict(X_test_clean)

print(classification_report(y_pred, y_test_clean))

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 92 — #110
�

�

�

�

�

�

92 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

precision recall f1-score support

0 0.90 0.80 0.85 55

1 0.74 0.86 0.79 36

accuracy 0.82 91

macro avg 0.82 0.83 0.82 91

weighted avg 0.83 0.82 0.83 91

Feature Importance

When a random forest is trained, we can easily access to the global feature impor-
tance attribute, which describe the ability of each feature to reduce impurity at each
node. This is expressed as the weight of that particular feature in training and pre-
diction, expressed in percentage.
To visualize it, we create a sorted pandas series of the feature importances, which is
then plotted. Note that here we are just returning the first top ten features, and each
of them is shown horizontally. This is shown in Figure 3.1.

In [16]: importance_rf = pd.Series(rf.feature_importances_,

index=X_train_clean.columns)

importance_rf_sorted = importance_rf.sort_values()

importance_rf_sorted.nlargest(20).plot(kind='barh', color='orange')

plt.title("Feature Importance Random Forest")

plt.show()

Figure 3.1: Feature (global) importance obtained by fitting a random Forest Classifier
on the Heart Disease Dataset.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 93 — #111
�

�

�

�

�

�

3.3. RANDOM FORESTS 93

The following snippet code shows the role of pruning in controlling overfitting, that
is it shows how accuracy varies as max_depth varies. As shown in Figure 3.2, it
seems after n_estimators= 5 we tend to overfit.

In [17]: max_depth = range(1,20)

train_scores = []

test_scores = []

for a in max_depth:

tree = RandomForestClassifier(random_state=0,max_depth=a)

tree.fit(X_train_clean,y_train_clean)

train_scores.append(tree.score(X_train_clean,y_train_clean))

test_scores.append(tree.score(X_test_clean,y_test_clean))

In [18]: plt.plot(max_depth, test_scores, train_scores)

plt.xlabel('max_depth')

plt.ylabel('Random Forest Accuracy')

plt.show()

Figure 3.2: The role of pruning in control overfitting.

We have therefore seen many different models applied on this dataset. It seems that
Random Forests is the ensemble method that shows the best performances. How-
ever, Logistic regression is still the model that outperforms the rest, which is rea-
sonable when we have a small dataset with some linear relationship among some
features.
To see this, we implement the following function, which outputs the score of the
models we have investigated so far in this section:

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 94 — #112
�

�

�

�

�

�

94 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

In [19]: def fitting_models():

lr=LogisticRegression()

dt = DecisionTreeClassifier()

svc = SVC()

rfc = RandomForestClassifier()

clfs = [('Logistic Regression', lr),

('Decision Tree', dt),

('Support Vector Classifier', svc),

('Random Forest Classifier', rfc)

]

for name,clf in clfs:

clf.fit(X_train,y_train)

pred = clf.predict(X_test)

score = format(accuracy_score(y_test,pred), '.4f')

print("{} : {}".format(name,score))

fitting_models()

Logistic Regression : 0.9533

Decision Tree : 0.8422

Support Vector Classifier : 0.4867

Random Forest Classifier : 0.9467

3.3.2 Random Forests Regressor

For the sake of completeness, we also show an example of Regression Random For-
est. We will make use of the hourly-aggregated data from the Washington D.C. Bike
Sharing system, publicy available at https://www.capitalbikeshare.com/system-
data. This dataset was used by Fanaee and Gama (2013) in their nice, well-written
paper.

In [20]: di = DataIngestion(df='bike_sharing.csv', col_to_drop=None,

col_target='cnt')

X_rf = di.features()

y_rf = di.target()

In [21]: X_train, X_test, y_train, y_test = train_test_split(X_rf,

y_rf,test_size=0.3, random_state=42)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 95 — #113
�

�

�

�

�

�

3.4. BOOSTING METHODS 95

X_train = X_train.reset_index(drop=True)

y_train = y_train.reset_index(drop=True)

X_test = X_test.reset_index(drop=True)

y_test = y_test.reset_index(drop=True)

In [22]: rf = RandomForestRegressor(n_estimators=30)

rf.fit(X_train,y_train)

y_pred = rf.predict(X_test)

In [23]: rmse_test = MSE(y_test,y_pred)**(1/2)

print('RMSE of RF (Test Set): {:.4f}'.format(rmse_test))

RMSE of RF (Test Set): 60.3499

Note that in order to obtain a more robust result, the reader is invited to perform a
grid search cross-validation, since the one just obtained might suffer from the way
the data were splitted.

3.4 Boosting Methods

Boosting refers to a family of ensemble methods in which many predictors are
trained sequentially, and each predictor learns from the errors of its predecessor.
In particular, the idea is that new trees are created to reduce the residual errors in
the predictions from the existing sequence of trees. More formally, in boosting many
weak learners are combined to form a strong learner. A weak learner is a model that
performs slightly better than random guessing. We will investigate three Boosting
algorithm: the AdaBoost, the Gradient Boosting, the XGBoost and finally the CatBoost.

3.4.1 AdaBoost

This algorithm was introduced by Freund and Schapire (1997). In AdaBoost each
predictor pays more attention to the instances wrongly predicted by its predecessor,
by constantly changing the weights of training instances. Furthermore, each predic-
tor is assigned a coefficient α that weights its contribution in the ensemble’s final
prediction.
Note that α depends on the predictor’s training error: basically, we fit the first model
on the inital dataset, and the training error for model one is determined. This error
can then be used to determine α1, which is predictor one coefficient.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 96 — #114
�

�

�

�

�

�

96 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

α1 is then used to determine the weights α2 of the training instances for model two:
here, the incorrectly predicted examples acquire higher weights, and are used to
train model two. In this case, the predictor is forced to pay more attention to the
incorrectly predicted examples. This process is repeated sequentially, until the N
predictors forming the ensemble are trained. An important parameter used in train-
ing is the learning rate η ∈ (0, 1): the learning rate, also called shrinkage, is used
to prevent overfitting since it reduces the influence of each individual learner and
leaves space for future ones to improve the overall ensemble. Unfortunately, there is
a trade-off between learning_rate and the number of trained trees. A smaller value
of the learning rate should be compensated by a greater number of estimators. Once
all the predictors in the ensemble are trained, the label of a new example can be
predicted depending on the nature of the problem. For classification, each predic-
tor predicts the label of a new instance, and the ensemble prediction is obtained by
weighted majority voting. For regression, the same procedure applies and the en-
semble’s prediction is obtained by performing a weighted average.

In [24]: from sklearn.ensemble import AdaBoostClassifier

from sklearn.metrics import roc_auc_score

dt = DecisionTreeClassifier(max_depth=1)

ada_clf = AdaBoostClassifier(base_estimator=dt,n_estimators=100)

ada_clf.fit(X_train_clean, y_train_clean)

y_pred_proba = ada_clf.predict_proba(X_test_clean)[:,1]

ada_clf_roc_auc = roc_auc_score(y_test_clean, y_pred_proba)

print(format(ada_clf_roc_auc, '.4f'))

0.8523

3.4.2 Gradient Boosting

The Gradient Boosting is another very popular ensemble method, proposed by Fried-
man (2001) that combines multiple decision trees to create a more robust model. In-
deed, in contrast to AdaBoost, the weights of the training examples are not adjusted
but each predictor is trained using the residual errors of its predecessor as labels.
Although gradient boosted trees are very popular within the ML community, we
should note that gradient boosted trees notably uses extremely shallow trees, say of
depth ranging from one to five, which makes the model smaller in terms of memory
and makes predictions fasters. Those shallow trees play the role of weak learners,
and the performance is improved by adding more and more shallow trees to the
predictor. Practically, there are (at least) three important parameters that one should
take care of when tuning a gradient boosted tree:

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 97 — #115
�

�

�

�

�

�

3.4. BOOSTING METHODS 97

1. Number of Trees in the ensemble (n_estimators), which controls the model
complexity;

2. Learning Rate (learning_rate), which controls how strongly each tree tries to
correct the mistakes of the previous trees;

3. Pre-pruning (max_depth), which controls the number of levels for each tree.

Note that a higher learning rate translates into a more complex model, since under
this scenario each tree can make stronger corrections on the training set.
In scikit-learn, the class GradientBoostingClassifier is used to easily fit a gradient boost-
ing classifier.

In [25]: from sklearn.ensemble import GradientBoostingClassifier

gbc = GradientBoostingClassifier(n_estimators=40)

gbc.fit(X_train_clean, y_train_clean)

gbc.score(X_test_clean, y_test_clean)

Out[25]: 0.8131868131868132

We can cross-validate the result, as we have done previously with other ensemble
techniques, as follows:

In [26]: n_estimators = [30,50,80] # Number of trees

max_depth = [1,3,5] # Maximum n of levels in each tree

learning_rate = [0.001, 0.01, 0.1] # model complexity

param_grid_ = {'n_estimators': n_estimators,

'max_depth': max_depth,

'learning_rate': learning_rate

}

In [27]: grid = GridSearchCV(gbc,param_grid=param_grid_, cv=5)

grid.fit(X_train_clean,y_train_clean)

print(grid.best_params_)

print(grid.best_score_)

yfit_gbc = grid.predict(X_test_clean)

{'learning_rate': 0.1, 'max_depth': 1, 'n_estimators': 30}

0.7971698113207547

In [28]: print(classification_report(y_test_clean,yfit_gbc))

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 98 — #116
�

�

�

�

�

�

98 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

precision recall f1-score support

0 0.76 0.86 0.81 49

1 0.81 0.69 0.74 42

accuracy 0.78 91

macro avg 0.78 0.77 0.78 91

weighted avg 0.78 0.78 0.78 91

Feature selection is also allowed with Boosting algorithm, as shown in Figure 3.3:

In [29]: importance_gb = pd.Series(gbc.feature_importances_,

index=X_train_clean.columns)

importance_gb_sorted = importance_gb.sort_values()

importance_gb_sorted.nlargest(20).plot(kind='barh',

color='orange')

plt.title("Feature Importance Gradient Boosting")

plt.show()

Figure 3.3: Feature global importance in Gradient Boosting Classifier.

Note that differently from Random Forest, the feature importance is notably changed
in magnitude: this is one of the main effect of combining many weak learners into
a single powerful model. Note also that some features were completely ignored to
the Gradient Boosting, or little importance was given to them: this contrasts with

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 99 — #117
�

�

�

�

�

�

3.4. BOOSTING METHODS 99

the results coming from the Random Forest, where those features were remarkably
important.

Practical Tip. If you don’t know which model is the best to apply, go with
Random Forest: it works quite robustly on any kind of data, but it might be slower
than Gradient Boosting, especially on large-scale problems.

3.4.3 Extreme Gradient Boosting (XGBoost)

XGBoost was proposed by the student Chen and his former advisor Guestrin in 2016,
and it was originally developed as a C++ command-line application. Fastly enough,
it was adopted by the Machine learning community since it outperforms many algo-
rithms, and it has been shown to achieve state-of-the-art performances on a variety of
benchmark machine learning datasets. As expected, the model start immediately ap-
pearing in many other languages, such as Python, Julia, and Scala. One of the princi-
pal reasons XGBoost became so popular is in its speed and performances. However,
because the core of XGBoost algorithm is parallelizable, it can deal with all of the
processing power of modern multicore computers. Furthermore, it is parallelizable
onto GPU’s and across networks of computers, making it feasible to train models on
very large datasets on the order of hundreds of millions of training examples. We
import the xgboost library in order to fit a model.

In [30]: import xgboost as xgb

Note that XGBoost should be considered, in principle, for any supervised problem
that satisfies the following criteria:

• the dataset under investigation is characterized by having a set of examples
significantly large than the number of features;

• there are possible outliers in the input space;

• you have a mixture of categorical and continuous variables;

• in Classification tasks, the target is unbalanced

Note also that XGBoost is consistent to missing values, which means that we do not
need to impute any value before fitting (see Section 3.4 of the seminal paper by Chen
and Guestrin for further details on this issue). Furthermore, while in Random Forests
we typically subsample the features in each node, with XGBoost we subsample the
features for the whole tree: this not only permits to build trees faster but also it

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 100 — #118
�

�

�

�

�

�

100 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

prevents overfitting.
More technically, XGBoost is based on the principle of weak-learner, where each
predictor could be improved by sequentially training new trees to the model. This
litterally means that the residual errors in the predictions are dynamically correct.
We completely follow the notation in Chen and Guestrin (2016), so please refer to
that article for further details. Let us consider a set of training examples (xi, yi),
i = 1, . . . , n and x ∈ Rk. Suppose that to predict the output, a classical tree ensemble
algorithm is used, where K additive functions fk in the space of CARTs are trained.
The predicted output is given by the sum of each individual function prediction,

ŷ = ∑
k

fk(xi)

To learn the set of functions used in the model, at step t we minimize the follow-
ing regularized objective function (obtained with a Taylor approximation of second
order)

L(t) �
n

∑
i=1

l
((

yi, ŷ(t−1)
)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

)
+ Ω(ft)

where:

• L(ŷ, y) = − (y log(ŷ) + (1 − y) ()) is a differentiable convex loss function that
computes the prediction error for each single training example;

• gi = ∂ŷ(t−1) l
(

yi, ŷ(t−1)
)

and hi = ∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

)
are the first and second

order gradient statistics on the loss function;

• Ω(f) = γ| f (x)|+ 1
2 λ||ω||2, with | f (x)| defines the number of leafs of tree, and

ω is the weight vector containing each leaf score.

Another very interesting feature related to XGBoost is that it incorporates a penal-
ization that can be understood as a mixture between a L1 (on the parameter γ) and
L2 (on the parameter λ) penalty, which practically translates into (global) feature
importance and selection. We have already seen how importance is computed in
Random Forest, and the same arguments apply here with boosted decision trees: for
each feature, it returns a score that indicates how important that feature was in the
construction of the new added trees within the model, which then allow attributes to
be ranked and compared to each other. Importance is calculated for a single decision
tree by the amount that each attribute split point improves the performance mea-
sure, weighted by the number of observations the node is responsible for. The per-
formance measure may be the Gini index used to select the split points in Classifica-

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 101 — #119
�

�

�

�

�

�

3.4. BOOSTING METHODS 101

tions or the variance in Regression trees. The feature importances are then averaged
across all of the the decision trees within the model. Although this is widely used in
practice, global feature selection has a drawback: it does not explain each prediction
score locally. In other words, it does not allow to explain to a non-technical audience
which features have contributed the most in the construction of each single score:
this is however explained by the SHAP (SHapley Additive exPlanations), proposed
by Lundeber and Lee (2017), which is a unified approach to explain the output of
any machine learning model. The idea behind Shapley values comes from a semi-
nal paper by Shapley (1953) related to Game Theory, and tells in which measure the
value of the feature X influence the prediction a particular example, compared to
the average prediction for the dataset, which is the baseline of the model. Hence,
the marginal contribution would mean how much each feature forces the prediction
to move away from that baseline. The SHAP is model agnostic, so in principle, can
be applied to any model. As an illustrative example, we take the example proposed
by Lundeberg in his GitHub repository https://github.com/slundberg/shap: this
small example fit an XGBoost regressor on the Boston House Dataset.

In [31]: import shap

X_boston,y_boston = shap.datasets.boston()

model_ = xgb.train({"learning_rate": 0.01},

xgb.DMatrix(X_boston, label=y_boston), 100)

explainer = shap.TreeExplainer(model_)

shap_values = explainer.shap_values(X_boston)

shap.force_plot(explainer.expected_value, shap_values[3,:],

X_boston.iloc[3,:],matplotlib=True)

Figure 3.4: Raw SHAP Score for the fourth observation, with the (negative and posi-
tive) effect of some features explained. Note that in red we have features that move
positively away from the baseline, whereas in blue the ones which affect negatively
this pattern.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 102 — #120
�

�

�

�

�

�

102 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

Remark. To overcome overfitting, XGBoost applies a shrinkage factor (also called
learning rate) that controls the weighting of new trees added to the model. In partic-
ular, setting values less than 0.1 typically has the effect of making less corrections for
each tree added to the model. This in turn results in more trees that must be added
to the model. Note also that typically the performance is positively correlated with
the number of estimators/trees for learning rate smaller than 0.1, but it gets worst
for greater learning rate, suggesting that a smaller number of trees may be required
to achieve good performances.

XGBoost in Practice: Application to the Heart Dataset

To show how XGBoost works in practice, we still use the Heart dataset; in particular,
we use XGBoost to predict the probability of having a heart attack given a set of
features. To fit the model, we use the fitting method from the book-specific xgboost
Class. This function basically search for the best hyperparameters values via cross-
validation, and then fit the best XGBoost Classifier model on the training data. Note
that we mst specify the parameter grid.

In [32]: param_grid = [{'max_depth': np.arange(4, 9, 1),

'learning_rate': [0.01,0.05,0.1,0.5,1],

'n_estimators': np.arange(100, 601, 100)}]

Here I will run the grid search on 150 different combinations of parameters over five
different folds: this will take quite a lot, so I suggest you to change the settings if you
want to run this function locally on your machine.

In [33]: model = xgboost.fitting(X_train_clean, y_train_clean,

param_grid = param_grid,

n_jobs=-1,cv=5)

Fitting 5 folds for each of 150 candidates, totalling 750 fits

[Parallel(n_jobs=1)]: Using backend SequentialBackend ... workers.

[Parallel(n_jobs=1)]: Done 750 out of 750 | elapsed: 3.9min finished

In [34]: y_pred = model.predict(X_test_clean)

y_pred_prob = model.best_estimator_.predict_proba(

X_test_clean)[:, 1]

In [35]: print(classification_report(y_test_clean,y_pred))

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 103 — #121
�

�

�

�

�

�

3.4. BOOSTING METHODS 103

precision recall f1-score support

0 0.80 0.90 0.85 49

1 0.86 0.74 0.79 42

accuracy 0.82 91

macro avg 0.83 0.82 0.82 91

weighted avg 0.83 0.82 0.82 91

The performances are pretty good but we are not outperforming the Random Forests
(on the same set of data). To get a better understanding of our prediction, we make
use of the SHAP values: the following snippet converts the model features into local
scores, stored into a pandas DataFrame, where each column now contains the local
shap value corresponding to that feature.

In [36]: explainer = shap.TreeExplainer(model.best_estimator_)

shap_values = explainer.shap_values(X_train_clean)

df_shap_values = pd.DataFrame(shap_values,

columns=list(X_train_clean.columns))

The next code produces, as output, a plot that shows which features force the model
output away from the base (average model) value. Features increasing the prediction
score are shown in red, whereas those decreasing the prediction score are in blue.

In [37]: shap.initjs()

shap.force_plot(explainer.expected_value, shap_values[27,:],

X_train_clean.iloc[5,:], link='logit')

We clearly see that for this particuar example, a score of 0.1 was obtained, and the
top features importance are reported. For instance, being male increases the proba-
bility of having a heart disease, whereas either Cholesterol level equal to 243 or an

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 104 — #122
�

�

�

�

�

�

104 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

observed asymptomatic chest pain reduces the aforementioned probability. To com-
plete the picture, let us investigate an example which has been classified as prone to
hearth failure:

In [38]: shap.force_plot(explainer.expected_value, shap_values[42,:],

X_train_clean.iloc[5,:], link='logit')

As one might expect, being male, aged 46 with maximum heart rate of 152 signifi-
cantly increases the score.

Bar chart of mean importance The following snippet takes the average of the
SHAP value magnitudes across the dataset, and plots it as a simple bar chart. The
result is shown in Figure 3.5.

Figure 3.5: Feature global importance as the average of the SHAP value magnitudes
across the dataset.

In [39]: shap.summary_plot(shap_values, X_train_clean, plot_type="bar")

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 105 — #123
�

�

�

�

�

�

3.4. BOOSTING METHODS 105

SHAP Summary Plot To identify the impact of each feature on the model output
in the training set, we use a density scatter plot of SHAP values for each feature.
Features are sorted by the sum of the SHAP value magnitudes across all samples.
The color represents the feature value (red high, blue low). This reveals for example
that a high value of the MaxHR feature (which describes the maximum Hearth Rate
per minute) tends to have a positive impact on the output score than the Age feature,
but for those samples where Age matters it has more impact than Chol, which effects
tend to be smaller (more compacted towards zero) than the Age, which seems to be
more spreaded. The result is shown in Figure 3.6.

In [40]: shap.summary_plot(shap_values, X_train_clean)

Figure 3.6: Feature Importance for all the dataset units.

SHAP dependence plot To understand how a single feature affects the output of
the model, we can plot the SHAP value of that feature versus the value of the feature
for all the examples in a dataset. A SHAP dependence plot showa the effect of a
single feature across the whole dataset. SHAP dependence plots are similar to partial
dependence plots, but account for the interaction effects present in the features. The
vertical dispersion of SHAP values at a single feature value is driven by interaction
effects, and another feature is chosen for coloring to highlight possible interactions.
Since SHAP values represent a feature’s responsibility for a change in the model
output, the plot below represents the change in predicted output model as MaxHR

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 106 — #124
�

�

�

�

�

�

106 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

changes. To help revealing these interactions, dependence_plot automatically selects
another feature for coloring. In this case coloring by Ca highlights that the average
MaxHR has higher impact on the positive class for examples with a high Ca value.
This is shown in Figure 3.7.

In [41]: shap.dependence_plot("MaxHR", shap_values, X_train_clean)

Figure 3.7: Dependence Plot for the feature MaxHR.

3.4.4 CatBoost

CatBoost is a new gradient boosting based algorithm, which was introduced by
Prokhorenkova et al. (2018), and its performances have been shown to be extremely
interesting, compared to other boosting algorithm, such as XGBoost, as reported
here:
https://github.com/catboost/benchmarks/tree/master/quality_benchmarks.
In particular, two major advances were introduced in CatBoost: on the one hand, a
new boosting schema, called ordered boosting, was proposed: differently from classi-
cal boosting algorithm, CatBoost divides a given dataset into random permutations,
and apply ordered boosting on those random permutations. On the other hand, it
smartly deals with categorical features, using a new algorithm for processing cate-
gorical features, by building new numerical features based on categorical features
and their combinations.
CatBoost actually divides a given dataset into random permutations. By default Cat-
Boost creates four random permutations. With this randomness we can further stop

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 107 — #125
�

�

�

�

�

�

3.4. BOOSTING METHODS 107

overfitting our model. We can further control this randomness by tuning parameter
bagging_temperature.
Note that the ordered boosting typically gets slower with small datasets (i.e. less
than 50, 000 examples), but it generally has very fast inference, because the algo-
rithm uses specific kind of trees, called symmetric trees.
As noted by one of the author, catboost outperforms other available methods on
GPU, but that is not true on CPU: typically, the training time on CPU is slower than
XGBoost, but this depends on the dataset properties, especially if we are dealing with
a very sparse datsaset - catboost does not perform well on those kind of dataset.
Let’s see in practice how this algorithm works. We start by importing the usual li-
braries, plus the catboost library, which comes with the book-specific library egeaML.

In [42]: from catboost import CatBoostClassifier, Pool, cv

To illustrate this algorithm, we use the Titanic dataset, which contains as target vari-
able the survival classification (that is 1 as alive, 0 as dead). This can be easily im-
ported from the catboost class datasets:

In [43]: from catboost.datasets import titanic

titanic_train, titanic_test = titanic()

titanic_train.head()

Out[43]: PassengerId Survived Pclass \

0 1 0 3

1 2 1 1

2 3 1 3

3 4 1 1

4 5 0 3

Name Sex Age \

0 Braund, Mr. Owen Harris male 22.0

1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0

2 Heikkinen, Miss. Laina female 26.0

3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0

4 Allen, Mr. William Henry male 35.0

SibSp Parch Ticket Fare Cabin Embarked

0 1 0 A/5 21171 7.2500 NaN S

1 1 0 PC 17599 71.2833 C85 C

2 0 0 STON/O2. 3101282 7.9250 NaN S

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 108 — #126
�

�

�

�

�

�

108 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

3 1 0 113803 53.1000 C123 S

4 0 0 373450 8.0500 NaN S

Before going into the catboost pipeline, let us perform a simple EDA on the Titanic
dataset, just to understand the type of the features.

In [44]: titanic_train.hist(bins='auto', figsize=(18,22), layout=(5,2))

It is clear that some of them are clearly categorical, such as Age, Pclass and SibSp, as
shown in Figure 3.8.

Figure 3.8: Exploratory Data Analysis on the Titanic Dataset.

In [45]: titanic_train['Embarked'] = titanic_train['Embarked'].fillna('S')

titanic_train['Cabin'] = titanic_train['Cabin'].fillna('Undefined')

In [46]: y = titanic_train.Survived

X = titanic_train.drop(['Survived'],axis=1)

categorical_features_indices = ['Name', 'Sex', 'Ticket',

'Cabin', 'Embarked', 'SibSp']

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 109 — #127
�

�

�

�

�

�

3.4. BOOSTING METHODS 109

In [47]: X_train, X_test, y_train, y_test = train_test_split(X,y,

test_size=0.2,random_state=42)

Before fitting the model, it is best practice to do a sort of preprocessing on the data. To
do so, we use the class Pool from the catboost library. However, one should note that
if most of the features are numerical, and this information is known, it is advisable
to preprocess it using the FeaturesData class. See the documentation avilable online
at https://catboost.ai/docs/concepts/python-features-data__desc.html. However,
if there is no confidence on which features should be considered as numerical, pass
the input dataset and the target directly to the Pool class.

In [48]: train_pool = Pool(X_train, y_train,

cat_features=categorical_features_indices)

We are ready to fit the catboost Classifier using the class CatBoostClassifier:

In [49]: model = CatBoostClassifier(

learning_rate=0.01,

depth=5,

iterations=300,

random_seed=42,

logging_level='Silent',

allow_writing_files=False

)

model.fit(X_train, y_train,

cat_features=categorical_features_indices)

model.score(X_train, y_train)

Out[49]: 0.9115168539325843

We got a score of 0.91 in the training set, which is extremely good as first temptative.
Note that one could validate this solution using cross-validation, which can be easily
implemented using the scikit-learn class or, more easily, the catboost specific class cv.
In the next snippet, we extract the global feature importance obtained from this al-
gorithm. The interest reader should also note that the local features importance ex-
pressed in terms of Shap Values are available in this framework, though in this par-
ticular example are not shown. Figure 3.9 shows the global feature importance on
the training set.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 110 — #128
�

�

�

�

�

�

110 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

In [50]: feature_importances = model.get_feature_importance(train_pool)

feature_names = X_train.columns

for score, name in sorted(zip(feature_importances,

feature_names), reverse=True):

print('{}: {}'.format(name, score))

Sex: 43.999999919835176

Pclass: 15.791071087673961

Cabin: 9.100205052848635

Ticket: 7.768885373753501

Embarked: 4.954292045080043

SibSp: 4.930285107310114

Fare: 4.023103732234545

Age: 3.827159943747061

PassengerId: 3.208750197467027

Parch: 2.396247540049968

Name: 0.0

In [51]: feature_importance_df = pd.DataFrame(sorted(zip(

feature_importances, feature_names), reverse=True),

columns=['importance','feature'])

feature_importance_df[['feature','importance']].set_index(

'feature').plot(kind='barh', figsize=(18, 10),

fontsize=14)

Out[51]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2c8fa908>

We now examine the performances on new, unseen data, and store the prediction
results on a pandas DataFrame. The results are quite good, as shown in the classi-
fication report: a precision of 80% is achieved as first attempt! This is remarkable,
considering that we have no preprocessed the data as we did in all the methods seen
in this book.

In [52]: y_pred = model.predict(X_test).astype(int)

prediction_test = pd.DataFrame({

"PassengerId": X_test["PassengerId"],

"Survived": y_pred,

"True": y_test.astype(int)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 111 — #129
�

�

�

�

�

�

3.4. BOOSTING METHODS 111

Figure 3.9: Global Feature Importance on the Training Titanic Dataset on fitting the
catboost Classifier.

})

print(prediction_test.head())

PassengerId Survived True

709 710 0 1

439 440 0 0

840 841 0 0

720 721 1 1

39 40 1 1

In [53]: print(classification_report(y_test, y_pred))

precision recall f1-score support

0 0.81 0.88 0.84 105

1 0.80 0.70 0.75 74

accuracy 0.80 179

macro avg 0.80 0.79 0.79 179

weighted avg 0.80 0.80 0.80 179

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 112 — #130
�

�

�

�

�

�

112 CHAPTER 3. BEYOND LINEARITY: ENSEMBLE METHODS FOR ML

The following snippet produce the confusion matrix on the test set, shown in Figure
3.10:

In [54]: classification_plots.confusion_matrix(y_test,y_pred)

Figure 3.10: Confusion Matrix on the Titanic Test Set.

In [55]: preds_proba = model.predict_proba(X_test)

As a final remark, note that catboost works well in many situations, and therefore
it is characterized by a variety of hyperparameters. In order to get the best perfor-
mance from this algorithm, what is important is the choice of the parameters, and not
necessarily their value via cross-validation. Among them, we mention the situations
with:

1. Time-dependent features: if the value of one (or more) features changes dras-
tically over time, it is advisable to set the hyperparameter has_time = True;

2. Heterogeneity in the weight: there are real-life situations where recent data
weight more than the older one. This is, for example, the case in pricing stock
markets, or with longitudinal data, where the outcome strictly depends on the
more recent set of features. With catboost, when you give more weightage to
a particular example, this has a higher chance of getting selected in the ran-
dom permutations. We could, for instance, assign a linear weightage all the
datapoints by setting sample_weight = [x f or x in range(train.shape[0])]

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 113 — #131
�

�

�

�

�

�

3.4. BOOSTING METHODS 113

3. Working with small datasets: when working with datasets with less than
50, 000 examples, it is best practice to set the parametrer fold_len_multiplier
as close as to 1 (must be >1) and approx_on_full_history =True . With these
parameters, CatBoost calculates residuals for each data point using different
model.

4. Working with large datasets: for large datasets, you can train CatBoost on
GPUs by setting parameter task_type = GPU. It also supports multi-server
distributed GPUs.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 114 — #132
�

�

�

�

�

�

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 115 — #133
�

�

�

�

�

�

Chapter 4

An introduction to Modern
Machine Learning Techniques

4.1 Introduction to Natural language Processing

In Natural Language Processing (NLP), we typically have to deal with text data,
which notably comes from very heterogeneous resoures: for instance, it can be a
document, where its content is grammatically correct and from which one might es-
tract useful informations, such as topic extraction; it can also be a tweet, containing
shorthands and hashtags, or a comment on youtube, from which we can perform
sentiment analysis or text classification.
Such kind of data is obvioulsy unstructured, and therefore we need to perform very
specific preprocessing to be able to fit a ML algorithm to a corpus of documents. For
instance, it is important that we standardize these texts into a machine friendly for-
mat: we want our model to treat similar words semantically as the same. Consider
the words dog and dogs: strictly speaking, they are different but they connotate the
same thing. Moreover, the words produce, produced and producing should be stan-
dardized to the same root, regardless of their grammatical use and format.
The aim of this Section is to learn standard techniques that allow one to achieve this
objective. Note that the text processing techniques one picks are strictly dependent
on the application under investigation. The interest reader might refer to the well-
written book by Bishop (2006) for further details, which is a nice and well-written
reference for standard NLP techniques. In the last part of this section, we will fo-
cus on modern NLP approaches for similarity retrieval among a set of words and

115

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 116 — #134
�

�

�

�

�

�

116 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

documents, using Word2Vec and Doc2Vec, respectively.

In [1]: from egeaML import DataIngestion, nlp

import csv

import re

import string

Using TensorFlow backend.

4.1.1 Preprocessing with Text Data

In general, when dealing with text data, we need to perform a rigorous text cleaning
in order to extract useful information from the available raw, unstructured data: if
we want to classify a document, we need to transform all the available data into
numeric features, so that we could apply standard ML classifiers - otherwise the
model is not able to ingest those data in that form. Here, we describe the standard
preprocessing pipeline for text data, which consists of

1. Tokenization. Each row string - which might consists of a sentence or a
whole document - is splitted into single, separated words, based on some user-
defined rules, such as converting all words to lowercase, removing all stop and
repeated words, as well as punctuactions.

2. Lemmatization. This process basically force a conjugate verb to be replaced by
its simple form, e.g. spoken will be replaced by speak, as well as any transfor-
mation regarding third person.

3. Stemmization. Each single remaining word is reduced to its root form.

To do that, I will make use of the nltk library, proposed by Bird et al. (2009), which
stands for natural language toolkit, though other libraries such as gensim can be used.
Note that also the scikit-learn API can be exploited, with its CountVectorizer method,
which is great especially if one aims to perform supervised learning based on ex-
tracted features with NLP techniques.
Tokenization is the process that turns a string or document into tokens, and this turns
out to be the first step in preparing a text for NLP. Note that words such as don’t will
be splitted into two words after tokenization, that is do and n’t, so we need to take
care of contraction, punctualization and characters when doing this very important
process.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 117 — #135
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 117

There exists different theories and rules regarding tokenization, and you can create
your own rules using regular expression: typically, we separate words by punctua-
tion, or we just break out words or sentences. To perform tokenization, we use the
nltk library, which stands for natural language toolkit.
Why bother with tokenization? Because it can helps us with some simple text pro-
cessing tasks like mapping part of speech, matching common words, but it is also
meant to clean the document by unwanted tokens, such as repeated words or punc-
tuation. In particular, to perform tokenization, we use the simple_preprocess from
gensim that performs the following operations:

1. it splits the sentence into single, lowercase tokens, and store them into a list;

2. it removes non-alphabethic characters, stopwords and even punctuations from
that list;

Alternatively, the nltk library proposes different methods to perform tokenization,
such as:

• the word_tokenize function returns a tokenized copy of the text under investi-
gation ;

• the sent_tokenize tokenizes a document into sentences;

• the regexp_tokenize tokenizes a string or document based on a regular expres-
sion pattern.

The egeaML class nlp has a method called \textsf{simple_tokenization}, which per-
forms similar steps as the one proposed above. As an example, let’s consider the
difference outputs of those different tokenization methods.

In [2]: mystr = "I haven't been to Rome (last year)-that's amazing!"

tok_egeaML = nlp.simple_tokenization(mystr)

tok_nltk = word_tokenize(mystr)

tok_gensim = simple_preprocess(mystr)

print('Original document: ', mystr)

print('Tokenized list using the egeaML library: ', tok_egeaML)

print('Tokenized list using the nltk library: ', tok_nltk)

print('Tokenized list using the gensim library: ', tok_gensim)

Original document: I haven't been to Rome (last year)-that's amazing!

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 118 — #136
�

�

�

�

�

�

118 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

Tokenized list using the egeaML library: ['i', 'haven', 't', 'been',

'to', 'rome', 'last', 'year', 'that', 's', 'amazing']

Tokenized list using the nltk library: ['I', 'have', "n't", 'been', 'to',

'Rome', '(', 'last', 'year', ')', '-', 'that', "'s", 'amazing', '!']

Tokenized list using the gensim library: ['haven', 'been', 'to', 'rome',

'last', 'year', 'that', 'amazing']

We import a simple .txt document containing two small articles concerning a deep
learning technique called Convolutional Neural Network.

In [3]: with open('article.txt') as f:

reader = csv.reader(f)

csv_rows = list(reader)

text = ""

for i in range(len(csv_rows[0])):

text += csv_rows[0][i]

text = text.split('\\n')

To show what sent_tokenization performs, we use the first article as an example:

In [4]: sentences = sent_tokenize(text[0])

print(sentences)

['Convolutional neural networks are very general and very powerful.',
'As an example consider Ilya Kostrikov and Tobias Weyand’s ChronoNet a CNN that
guesses the year in which a photo was taken.',

'Since public sources can provide large numbers of digitally archived photos taken
over the past century with known dates it’s relatively straightforward to obtain
labeled data (dated photos in this case) with which to train this network.']

Basically, it splits the article into paragraphs, where the full stop is the separator
key between two sentences. On the contrary, word_tokenizer splits a document into
single tokens, which definitely increases the granularity of the corpus.

In [5]: tokenized_sent = word_tokenize(sentences[2])

print(tokenized_sent)

['Since', 'public', 'sources', 'can', 'provide', 'large', 'numbers', 'of',
'digitally', 'archived', 'photos', 'taken', 'over', 'the', 'past', 'century', 'with',

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 119 — #137
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 119

'known', 'dates', 'it', '’', 's', 'relatively', 'straightforward', 'to', 'obtain',
'labeled', 'data', '(', 'dated', 'photos', 'in', 'this', 'case', ')', 'with',
'which', 'to', 'train', 'this', 'network', '.']

Note that we are still considering unwanted characters and words, such as the paren-
theses or the infinite marker “to” before a verb. However, removing stopwords and
non-alphabetic characters is a very important preprocessing step. To do so, we might
use book-specific class nlp, which has a method called parsing_text that basically re-
moves the most common english stopwords, punctuactions and leading and trailing
spaces.

In [6]: print(nlp.parsing_text(sentences[2]))

public sources provide large numbers digitally archived photos taken past century
known dates it’s relatively straightforward obtain labeled data dated photos case
train network

Alternatively, one might define a a set of words that has to be removed before lem-
mization: this is typically made by all stopwords and punctuations.

In [7]: punct = set(string.punctuation)

stop = set(stopwords.words('english'))

stop.add('to')

To perform lemmatization and stemmization, we use the book-specific method
clean_text from the egeaML library, which performs the following steps:

1. It firstly performs simple tokenization;

2. If the token is not a stopwords or its length is smaller than three, then we
perform lemmatization and stemmization on that token;

3. else, it is removed.

Note that we use the Porter’s algorithm (1980) named Snowball to perform stem-
mization, sicne it is the most popular one, and it has been shown to be empirically
very effective (Manning et al. (2008)).
An example is made on the first document:

In [8]: doc_sample = text[0]

print('Original document: \n')

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 120 — #138
�

�

�

�

�

�

120 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

words = []

for word in doc_sample.split(' '):

words.append(word)

print(words)

print('\n Tokenized and lemmatized document: \n')

print(nlp().clean_text(doc_sample))

Original document:

['Convolutional', 'neural', 'networks', 'are', 'very', 'general', 'and',

'very', 'powerful.', 'As', 'an', 'example', 'consider', 'Ilya', 'Kostrikov',

'and', 'Tobias', 'Weyand’s', 'ChronoNet', 'a', 'CNN', 'that', 'guesses',

'the', 'year', 'in', 'which', 'a', 'photo', 'was', 'taken.', 'Since',

'public', 'sources', 'can', 'provide', 'large', 'numbers', 'of',

'digitally', 'archived', 'photos', 'taken', 'over', 'the', 'past',

'century', 'with', 'known', 'dates', 'it’s', 'relatively', 'straightforward',

'to', 'obtain', 'labeled', 'data', '(dated', 'photos', 'in', 'this', 'case)',

'with', 'which', 'to', 'train', 'this', 'network.']

Tokenized and lemmatized document:

['convolut', 'neural', 'network', 'general', 'power', 'exampl', 'consid',

'ilya', 'kostrikov', 'tobia', 'weyand', 'chrononet', 'cnn', 'guess',

'year', 'photo', 'take', 'public', 'sourc', 'provid', 'larg', 'number',

'digit', 'archiv', 'photo', 'take', 'past', 'centuri', 'know', 'date',

'relat', 'straightforward', 'obtain', 'label', 'data', 'date', 'photo',

'case', 'train', 'network']

The granularity of the document has been reduced by a large amount of charachters
and stopwords, as desired. We now perform the same operation on the two articles:

In [9]: doc = [nlp().clean_text(x) for x in text]

Remark. Twitter is a frequently used source for NLP tasks. We can extract useful informa-
tion using regex, or the nltk class TweetTokenizer, which allows to parse easily tweets.

To show how the TweetTokenizer works, let’s take, for instance, a simple tweet:

In [10]: tweet = 'I used a kernelized SVM to classify text.

I love learning new #NLP techniques using #python!

@someone #NLP is real fun! :-) #ml #NLP #python'

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 121 — #139
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 121

In [11]: tweet

Out[11]: 'I used a kernelized SVM to classify text.

I love learning new #NLP techniques using #python!

@someone #NLP is real fun! :) #ml #NLP #python'

In [12]: tknzr = TweetTokenizer()

tokens = tknzr.tokenize(tweet)

We can also tokenize the tweet by employing a regex that captures all the words that
starts with a hashtag:

In [13]: regex = r"#\w+"

list(set(regexp_tokenize(tweet, regex)))

Out[13]: ['#python', '#ml', '#NLP']

Notice that our pattern only matches words that start with a hashtag. Different regex
can be used to crete different patterns, and I invite the interested reader to consult
the following link for more details: https://docs.python.org/2/library/re.html.

4.1.2 Numerical Representation of Documents: the Bag-of-Words

Once we have reduced the original documents to a list of stems, it is possible to
represent each single element as a unique integer: this can be easily done using the
Dictionary object from gensim. In particular, the function doc2idx performs a ordered
one-to-one mapping between words and integers. As an example, let’s recall the first
document we have processed before:

In [14]: print(doc[0])

['convolut', 'neural', 'network', 'general', 'power', 'exampl', 'consid',

'ilya', 'kostrikov', 'tobia', 'weyand', 'chrononet', 'cnn', 'guess',

'year', 'photo', 'take', 'public', 'sourc', 'provid', 'larg', 'number',

'digit', 'archiv', 'photo', 'take', 'past', 'centuri', 'know', 'date',

'relat', 'straightforward', 'obtain', 'label', 'data', 'date', 'photo',

'case', 'train', 'network']

We would like to create a numerical representation of that list. This is easily imple-
mented in gensim, as follows:

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 122 — #140
�

�

�

�

�

�

122 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

In [15]: dictionary = Dictionary(doc)

print(dictionary.doc2idx(doc[0]))

[6, 19, 18, 11, 24, 10, 5, 13, 15, 31, 33, 3, 4, 12, 34, 23, 30, 26,

28, 25, 17, 20, 9, 0, 23, 30, 22, 2, 14, 8, 27, 29, 21, 16, 7, 8, 23,

1, 32, 18]

The interesting fact about the above representation is that it returns an ordered list of
integers. But what does ordered mean in this context? For instance, the word network
appears now as the integer 18, and it occurrs twice. This representation therefore is
just a mapping, in the sense it preserves the order in which each word appears in the
list, but it does not perform any aggregation of the numerical elements inside the list
of tokens. If one is interested in this task, then he has to focus on its corresponding
bag-of-words representation.
The bag-of-words representation for texts was proposed by Harris (1954) as a feature
to represent texts as a fixed-length feature vector. The bag-of-words representation
(BoW, shortly) simply counts the absolute frequency of each word within a docu-
ment. This representaton is extremely useful, since many ML algorithm requires the
input to be represented as a fixed-length vector. Computing the BoW representation
for a corpus of documents consists of the following three steps:

1. Tokenization. Split each document into tokens by splitting them on whites-
pace and punctuation.

2. Vocabulary building. Build a vocabulary of all words that appear in the cor-
pus of documents, and order them in alphabetical order.

3. Encoding. For each document, compute the words absolute frequency.

These steps are performed by the doc2bow function, as shown in the next snippet:

In [16]: corpus = [dictionary.doc2bow(x) for x in doc]

In [17]: print(corpus[0])

[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1),

(8, 2), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1),

(15, 1), (16, 1), (17, 1), (18, 2), (19, 1), (20, 1), (21, 1),

(22, 1), (23, 3), (24, 1), (25, 1), (26, 1), (27, 1), (28, 1),

(29, 1), (30, 2), (31, 1), (32, 1), (33, 1), (34, 1)]

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 123 — #141
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 123

We can generate a frequency matrix containing the number of times a word appeared
in each of the stemmed documents. Basically, each row represents a document, and
columns are the words contained in the corpus. In gensim, this is generated using
the method corpus2dense.

In [18]: mylist = list()

for k,v in dictionary.token2id.items():

mylist.append(k)

doc2freq = pd.DataFrame(matutils.corpus2dense(corpus,

num_terms=len(dictionary.token2id)),

index = mylist,

columns=['Doc1', 'Doc2'])

doc2freq.T.iloc[:,10:20]

Out[18]: exampl general guess ilya know kostrikov label larg network \
Doc1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0
Doc2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

neural
Doc1 1.0
Doc2 1.0

Remark. If interested in getting a dense BoW representation of the corpus, gensim allows
you to get it easily, as follows.

In [19]: tf_sparse_array = matutils.corpus2csc(corpus)

tf_sparse_array

Out[19]: <63x2 sparse matrix of type '<class 'numpy.float64'>'

with 69 stored elements in Compressed Sparse Column format>

Note that the scikit-learn function CountVectorizer allows to produce a BoW repre-
sentation of the given corpus. This function is a transformer, and it will take a series
of arguments; we just used some of them, which are described here:

• min_df: minimum required number of occurences of a word;

• stop_words: removes the unwanted words;

• lowercase: converts all words to lowercase;

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 124 — #142
�

�

�

�

�

�

124 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

• token_pattern: selects only words with a minimum number of characters of
two.

In [20]: vectorizer = CountVectorizer(analyzer='word',

min_df=2,

stop_words='english',

lowercase=True,

token_pattern='[a-zA-Z0-9]{2,}',

)

data_vectorized = vectorizer.fit_transform(text)

data_dense = data_vectorized.todense()

Note that despite its popularity, the BoW has many disadvantages. On the one hand,
the ordering of tokens is completely lost, which implies that differnt sentences might
have the same numerical representation. on the other hand, BoW tend to ignore
semantics of the words, that is the distance between two (or more) words. We will
discuss alternative representations in Section 4.1.6.

4.1.3 Practical Example: Sentiment Analysis with IMDb Reviews
Dataset

Let us try to perform a simple binary text classification on the avial-
ble dataset IMDb Reviews on movie review (which is available at:
http://ai.stanford.edu/ amaas/data/sentiment/).
the IMDb dataset was firstly proposed by Maas et al. (2011) as a benchmark for
sentiment analysis, and it consists of 100,000 movie reviews taken from the website
IMDB. The task is as follows: given a review, we want to classify the movie as
good or negative based on the review content. To do so, we need to convert the
data, that is we need to convert the string representation of the text into a numeric
representation that we can apply our standard machine learning pipeline to classify
movies.
To download the dataset, we can use the utility functionality provided in the egeaML
library, which allows to download easily the .tar file containing the IMDB movie
reviews. In case the data have already been downloaded, the report will inform the
user about that (as shown below).

In [21]: url = 'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz'

foldername = 'aclImdb'

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 125 — #143
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 125

In [22]: utils = utils()

utils.download_data(foldername, urls=[url])

Downloading data...

aclImdb_v1.tar.gz already downloaded

Download Finished

In [23]: from sklearn.datasets import load_files

reviews_train = load_files("aclImdb/train/")

text_train, y_train = reviews_train.data, reviews_train.target

reviews_test = load_files("aclImdb/test/")

text_test, y_test = reviews_test.data, reviews_test.target

In [24]: vect = CountVectorizer(min_df=5,

stop_words='english').fit(text_train)

X_train = vect.transform(text_train)

With the CountVectorizer we have created a (sparse) matrix, which is a numerical
representation of the text data we have. From this, we can now apply any ML model
we wish.

In [25]: feature_names = vect.get_feature_names()

In [26]: scores = cross_val_score(LogisticRegression(),

X_train, y_train, cv=5)

print("Mean cross-validation accuracy: {:.2f}".format(

np.mean(scores)))

Mean cross-validation accuracy: 0.88

In [27]:param_grid = {'C': [0.001, 0.01, 0.1, 1, 10]}

grid = GridSearchCV(LogisticRegression(), param_grid, cv=5)

grid.fit(X_train, y_train)

print("Best cross-validation score: {:.2f}".format(

grid.best_score_))

print("Best parameters: ", grid.best_params_)

Best cross-validation score: 0.88

Best parameters: {'C': 0.1}

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 126 — #144
�

�

�

�

�

�

126 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

A simple Logistic Regression has an accuracy of 88% with this set of data: amazing!
Interestingly, we have very good performances also on the test set.

In [28]: X_test = vect.transform(text_test)

print("{:.2f}".format(grid.score(X_test, y_test)))

0.87

4.1.4 Term Frequency-Inverse Document Frequency

BoW can be a great way to determine the significant words in a text, based on the
number of times they are used. However, the above frequency matrix does not take
into account the importance of each single word within a document. In other words,
it tends to give more importance to popular words, and less to contextual words.
Instead, the term frequency-inverse document frequency matrix (tf-idf, shortly) al-
lows to weight each word based on its frequency in the document. But how does it
work? Basically, the weight of a term that occurs in a document is simply propor-
tional to the term frequency. More formally, for a term i in document j, we compute
its weight as follows:

wij = tfij · log
(

N
dfi

)

where

• tfij describes the number of occurrences of word i in document j;

• dfi describes the number of documents containing i;

• N denotes the number of documents.

Practically, higher scores are associated with words that are specific to a particular
document, and that are mostly used there. Instead, lower scores will be assigned
to words that frequently appear in different documents. Hence, higher scores are
associated to words that are particularly relevant for that particular document.
Note that differently from BoW, where we have d-dimensional vectors of discrete
counts, the tf-idf matrix will instead contains continuous values. Let’s see how to
produce a tf-idf matrix in gensim, using the function TfidfModel from the models
class.

In [29]: tfidf = models.TfidfModel(corpus)

To show the most important words for a particular document, we use the book-
specific function top_words:

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 127 — #145
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 127

In [30]: nlp.top_words(corpus=corpus, dictionary=dictionary,

doc=corpus[0], n_words=10)

Out[30]: ['photo (0.474)',

'date (0.316)',

'archiv (0.158)',

'case (0.158)',

'centuri (0.158)',

'chrononet (0.158)',

'consid (0.158)',

'digit (0.158)',

'exampl (0.158)',

'general (0.158)']

We can store the results in a dataframe, as we have done for the BoW representation.

In [31]: tfidf_mat = pd.DataFrame(matutils.corpus2dense(

[tfidf[x] for x in corpus],

num_terms=len(dictionary.token2id)),

index = mylist,

columns=['Doc1', 'Doc2'])

tfidf_mat.iloc[30:40, :].T

Out[31]: take tobia train weyand year breakthrough build \
Doc1 0.0 0.158114 0.158114 0.158114 0.158114 0.000000 0.000000
Doc2 0.0 0.000000 0.000000 0.000000 0.000000 0.149071 0.149071

classif come constitut
Doc1 0.000000 0.000000 0.000000
Doc2 0.149071 0.149071 0.149071

4.1.5 Bag-of-Words with More Than One Word (n-Grams)

Let’s consider the follwing two strings:

• it’s boring, not fun at all

• it’s fun, not boring at all

For a human being, those two strings are obviously different, but for a machine they
share the same structure! This translates into the fact that a machine is not able to

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 128 — #146
�

�

�

�

�

�

128 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

distinguish their meaning, and therefore one of them would be missclassified. What
we want to stress is that the two BoW representations are exactly the same, but the
original texts have a different meaning. Hence, BoW representation has a drawback:
it looses completely the order in which the words are given in the sentence. Luckily,
we can capture the impact of a word’s neighborhood by taking into account not just
single tokens but also the counts of pairs (bigrams) or triplets (trigrams) of words
that appear next to each other. More generally, sequences of n tokens are known as
n-grams.
With the scikit-learn CountVectorizer we can change the range of tokens that are con-
sidered as features by changing the ngram_range parameter, which is a tuple con-
sisting of the minimum and the maximum length of the sequences of tokens that we
wish to consider. We fit a Logistic Regression model on the IMDb dataset, taking
into acount different n_gram range, as follows:

In [32]: pipe = make_pipeline(CountVectorizer(min_df=5),

LogisticRegression())

param_grid = {

"logisticregression__C": [0.001, 0.01, 0.1, 1, 10, 100],

"countvectorizer__ngram_range": [(1, 1), (1, 2), (1, 3)]}

grid = GridSearchCV(pipe, param_grid, cv=5)

grid.fit(text_train, y_train)

print("Best cross-validation score: {:.2f}".format(

grid.best_score_))

print("Best parameters:\n{}".format(grid.best_params_))

Best cross-validation score: 0.91

Best parameters:

{'logisticregression__C': 100, 'countvectorizer__ngram_range': (1, 3)}

We have slightly imporoved the model, compared to a simple BoW model. To better
understand the motivation of using n-grams, let’s try to play a little bit with the
following set of sentences:

In [33]: documents = [

"Apple stock has recently hit new all-time highs.",

"A recent research has shown that an apple a day is a good ally

to prevent cancer formation.",

"Apple has recently launched a new iphone",

"I prefer eating oranges instead of apples in the winter.",

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 129 — #147
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 129

"scikit-learn logo is orange and blue.",

"scikit-learn pipeline object is fantastic"]

In [34]:vect = CountVectorizer(stop_words='english')

vect.fit(documents)

Out[34]: CountVectorizer(analyzer='word', binary=False, decode_error='strict',

dtype=<class 'numpy.int64'>, encoding='utf-8',

input='content', lowercase=True, max_df=1.0,

max_features=None, min_df=1, ngram_range=(1, 1),

preprocessor=None, stop_words='english',

strip_accents=None,

token_pattern='(?u)\\b\\w\\w+\\b',

tokenizer=None, vocabulary=None)

Fitting the CountVectorizer consists of the tokenization of the training data and build-
ing of the vocabulary, which we can access as the vocabulary_ attribute:

In [35]: print("Vocabulary size: {}".format(len(vect.vocabulary_)))

print("Vocabulary content:\n {}".format(vect.vocabulary_))

Vocabulary size: 30

Vocabulary content:

{'apple': 1, 'stock': 27, 'recently': 23, 'hit': 10, 'new': 16, 'time': 28,

'highs': 9, 'recent': 22, 'research': 24, 'shown': 26, 'day': 4, 'good': 8,

'ally': 0, 'prevent': 21, 'cancer': 3, 'formation': 7, 'launched': 13,

'iphone': 12, 'prefer': 20, 'eating': 5, 'orange': 18, 'instead': 11,

'winter': 29, 'scikit': 25, 'learn': 14, 'logo': 15, 'blue': 2,

'pipeline': 19, 'object': 17, 'fantastic': 6}

To create the Bag-of-Words representation for the training data, we call the transform
method:

In [36]: bag_of_words = vect.transform(documents)

print("bag_of_words: {}".format(repr(bag_of_words)))

print("Dense representation of bag_of_words:\n{}".format(

bag_of_words.toarray()))

bag_of_words: <6x30 sparse matrix of type '<class 'numpy.int64'>'

with 38 stored elements in Compressed Sparse Row format>

Dense representation of bag_of_words:

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 130 — #148
�

�

�

�

�

�

130 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

[[0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0]

[1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0]

[0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0]]

Note that the columns of the above co-occurrence matrix are orthogonal, but we
can still compute the similarity of two sentences using the tfidf matrix. Hence, we
compute it using the TfidfVectorizer method, as follows:

In [37]: from sklearn.feature_extraction.text import TfidfVectorizer

tf = TfidfVectorizer(stop_words='english')

To compute the similarity between sentences, we perform tfidf matrix multiplication,
as follows:

In [38]: tfidf = tf.fit_transform(documents)

pairwise_similarity = tfidf * tfidf.T

pairwise_similarity.toarray()

Out[38]: array([[1. , 0.04821943, 0.36974535, 0.06578578, 0. ,

0.],

[0.04821943, 1. , 0.05985831, 0.05134479, 0. ,

0.],

[0.36974535, 0.05985831, 1. , 0.08166472, 0. ,

0.],

[0.06578578, 0.05134479, 0.08166472, 1. , 0.14967046,

0.],

[0. , 0. , 0. , 0.14967046, 1. ,

0.32189934],

[0. , 0. , 0. , 0. , 0.32189934,

1.]])

What we see is that there is an interesting similarity between the first and third sen-
tence (that is the ones which speak about the Apple company), as well as between
the last two sentences (which speak about the scikit-learn project). To look only at
bigrams—that is, only at sequences of two tokens following each other—we can set
ngram_range to (2, 2):

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 131 — #149
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 131

In [39]: cv = CountVectorizer(ngram_range=(1, 3)).fit(documents)

print("Vocabulary size: {}".format(len(cv.vocabulary_)))

print("Vocabulary:\n{}".format(cv.get_feature_names()))

Vocabulary size: 127

Vocabulary:

['all', 'all time', 'all time highs', 'ally', 'ally to', 'ally to prevent',

'an', 'an apple', 'an apple day', 'an apple in', 'an orange',

'an orange instead', 'and', 'and blue', 'apple', 'apple day',

'apple day is', 'apple has', 'apple has recently', 'apple in',

'apple in the', 'apple stock', 'apple stock has', 'blue', 'cancer',

'cancer formation', 'day', 'day is', 'day is good', 'eating',

'eating an', 'eating an orange', 'fantastic', 'formation', 'good',

'good ally', 'good ally to', 'has', 'has recently', 'has recently hit',

'has recently launched', 'has shown', 'has shown that', 'highs', 'hit',

'hit new', 'hit new all', 'in', 'in the', 'in the winter', 'instead',

'instead of', 'instead of an', 'iphone', 'is', 'is fantastic', 'is good',

'is good ally', 'is orange', 'is orange and', 'launched', 'launched new',

'launched new iphone', 'learn', 'learn logo', 'learn logo is',

'learn pipeline', 'learn pipeline object', 'logo', 'logo is',

'logo is orange', 'new', 'new all', 'new all time', 'new iphone',

'object', 'object is', 'object is fantastic', 'of', 'of an', 'of an apple',

'orange', 'orange and', 'orange and blue', 'orange instead',

'orange instead of', 'pipeline', 'pipeline object', 'pipeline object is',

'prefer', 'prefer eating', 'prefer eating an', 'prevent',

'prevent cancer', 'prevent cancer formation', 'recent',

'recent research', 'recent research has', 'recently', 'recently hit',

'recently hit new', 'recently launched', 'recently launched new',

'research', 'research has', 'research has shown', 'scikit',

'scikit learn', 'scikit learn logo', 'scikit learn pipeline', 'shown',

'shown that', 'shown that an', 'stock', 'stock has',

'stock has recently', 'that', 'that an', 'that an apple', 'the',

'the winter', 'time', 'time highs', 'to', 'to prevent',

'to prevent cancer', 'winter']

Using longer sequences of tokens usually results in many more features, and in
more specific features. Let’s see how the similarity matrix has changed after hav-
ing choosen to use also biagrams:

In [40]: tf_bg = TfidfVectorizer(stop_words='english',ngram_range=(1, 2))

tf_bg.fit(documents)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 132 — #150
�

�

�

�

�

�

132 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

Interestingly, considering bigrams does not lead to an improvement in the informa-
tion retriveal in this set of docuemnts.

In [41]: tfidf_bg = tf_bg.fit_transform(documents)

pairwise_similarity = tfidf_bg * tfidf_bg.T

pairwise_similarity.toarray()

Out[41]: array([[1. , 0.02402227, 0.17883097, 0.03250323, 0. ,

0.],

[0.02402227, 1. , 0.02961369, 0.0259489 , 0. ,

0.],

[0.17883097, 0.02961369, 1. , 0.04006867, 0. ,

0.],

[0.03250323, 0.0259489 , 0.04006867, 1. , 0.0765878 ,

0.],

[0. , 0. , 0. , 0.0765878 , 1. ,

0.25691906],

[0. , 0. , 0. , 0. , 0.25691906,

1.]])

For most applications, the minimum number of tokens should be one, as single
words often capture a lot of meaning. Adding bigrams helps in most cases, but
longer sequences might lead to overfitting. As a thumb rule, the number of bigrams
could be the number of unigrams squared and the number of trigrams could be the
number of unigrams to the power of three, leading to very large feature spaces.

4.1.6 Beyond Bag-of-words: Word Embeddings

The methods we have investigated so far typically use a local representation of the
word, meaning that each sentence is encoded into a discrete vector of occurrences
(typically 1 if the word was observed in that document, 0 otherwise), which gives
to us a very sparse vector with dimension corresponding to the words in the corpus
of documents. Based on that representation, we have discussed the tf-idf represen-
tation, which basically is a continuous representation of the discrete counts, taking
into account the corresponding weight in the document.
This was the standard approach to represent documents in terms of fixed-length
vector representation. But, as we have already seen in previous sections, the BoW
approach suffers from (at least) two problems: on the one hand, we hand up with
extremely long, sparse vectors, which might be a problem for the RAM as the size
of the corpus gets biggere and bigger. On the other hand, the column vector of the

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 133 — #151
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 133

co-occurrence matrix are completely orthogonal, and therefore we might not be able
to retrieve similarity relationship between them.
A possible solution is to represent each single word as a dense vector of d-
dimensions, which is also referred as distributed representation (or simply embed-
dings): the idea is that each word is going to be represented by a dense fixed-length
vector that contains the essence of that word, chosen so that it is similar to vectors of
words that appear in similar contexts. Since the seminal work by Hinton et al. (1986),
many interesting works have been produced based on that idea. Among many, it is
worth to cite the paper by Socher et al. (2011) and Glorot et al. (2011). One of the most
interesting works produced in the last decade is the paper by Mikolov et al. (2013),
who introduced the Skip-gram model, which is an efficient model that allows to learn
the word vectors based on their contextual words. This paper basically extends the
idea by Bengio et al. (2006), who actually used the concatenation of several word
vectors as the input of a neural network, and tried to predict the next word based on
that augmented vector. However, differently from their structure, the training of the
Skip-gram model is somehow lighter, since we end up with a binary classification
task, and it does not involve dense matrix multiplications.
The skip-gram algorithm is one of two algorithms proposed by Mikolov et al. (2013a
and 2013b), and we typically refer to this class of algorithms as Word2Vec. The in-
tuition of Word2Vec is that instead of counting how often each word w occurs near
another one (in the corpus), we train a supervised model which target is the one-hot
representation of the word w.
The algorithm basically works as follows: each word in the dictionary is represented
by a vector, which is randomly initialized. Then, for each word w in the given text,
we are going to compute the similarity between its word vector and the context
words vectors; based on that similarity, we then calculate the probability that the
context word is going to be associated with the word w, and we iteratively adjust the
initial vector using gradient descent, that is we adjust the word vectors to maximize
the following probability:

P (c|w, θ) =
euT

c ·vw

∑v∈V euT
v ·vw

where vw denotes the word vector when w is the center word we start with, and
uw is instead the word vector when w is a context word, and the set V denotes the
entire set of tokens in the corpus. Note that θ denotes a vector of parameters (in
our case word vectors) that we wish to optimize, which dimension is going to be

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 134 — #152
�

�

�

�

�

�

134 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

2dV, where d is the dimension of the embedding, V the dimension of the tokenized
corpus, and since we are considering, for each word, its vector when it is a center or
context word, we multiply by two. Under the assumption that all context words are
independent, and taking into account multiple context words in the window of size
m, we therefore maximize the following loglikelihood function:

1
T

T

∑
t=1

∑
−m≤j≤j

log P
(
wt+j|wt, θ

)
(4.1)

where T denotes the length of the corpus. The goal is to minimize the above cost
function, which translates as the model is going to predict, given some context, the
word that semantically is more appropriate. How do we compute those probabil-
ities? During the training phase, the skip-gram tries to adjust the parameters to
minimize the cost function. Typically, this is done by computing all vector gradients
for the vector parameter θ, which basically contains the word vector representation.
The calculations are shown in Appendix B to avoid mathematics during the exposi-
tion.
Let us see in practice why Word2Vec embeddings have gained such a remarkable
popularity.

In [42]: from egeaML import *

import gensim.downloader as api

Using TensorFlow backend.

The following application has been inspired by the following gensim stable doc-
umentation at https://radimrehurek.com/gensim/models/keyedvectors.html. In
particular, we will make use of the pre-trained GloVe Wikipedia word vectors (see
Pennington et al. (2014) for furher details, and also refer to the stable GloVe website:
https://nlp.stanford.edu/projects/glove/). Note that gensim easily allow to load
the Glove dataset into Word2Vec format using its downloader object, as shown here.
Otherwise, the reader can download the data from the aforementioned website, and
convert the file into the Word2Vec format using the method glove2word2vec from the
scripts class.

In [43]: model = api.load('glove-wiki-gigaword-100')

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 135 — #153
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 135

Let us try to see to which terms Italy is related:

In [44]: model.most_similar('italy')

Out[44]: [('spain', 0.7746186852455139),

('italian', 0.7569283246994019),

('portugal', 0.7421526312828064),

('germany', 0.740085244178772),

('greece', 0.7235244512557983),

('netherlands', 0.7212409973144531),

('france', 0.7163637280464172),

('austria', 0.7158598899841309),

('switzerland', 0.6981543302536011),

('brazil', 0.6805199384689331)]

That makes sense: the country Italy is mostly related to European countries, as well
as to the word that identifies its citizens. That was easy: let us try with another one.

In [45]: model.most_similar('schumacher')

Out[45]: [('barrichello', 0.8159974813461304),

('ralf', 0.8043726682662964),

('ferrari', 0.8011481761932373),

('coulthard', 0.8001769781112671),

('massa', 0.7799736261367798),

('raikkonen', 0.7790895700454712),

('alonso', 0.7785213589668274),

('montoya', 0.7640366554260254),

('villeneuve', 0.7573407888412476),

('mclaren', 0.7414728403091431)]

Not surprisingly, the word Schumacher is related to many other famous F1 drivers.
For those who are not keen on F1, those famous names of the first decade of the
current century. Let us try a last one:

In [46]: model.most_similar('apple')

Out[46]: [('microsoft', 0.7449405789375305),

('ibm', 0.6821643710136414),

('intel', 0.6778088212013245),

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 136 — #154
�

�

�

�

�

�

136 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

('software', 0.6775422096252441),

('dell', 0.6741442680358887),

('pc', 0.6678153276443481),

('macintosh', 0.66175377368927),

('iphone', 0.6595611572265625),

('ipod', 0.6534676551818848),

('hewlett', 0.6516579985618591)]

That one is tricky, since it might be referred to Apple company, but also to the for-
bidden fruit. Another interesting application is based on the concept of vectors’
analogy, proposed by Levy and Goldberg (2014), who actually show that the dif-
ference between vectors can capture some analogies between words. For instance,
they show that if we consider the difference in (capital,country) vectors of a specific
country, say (Rome, Italy), and we take the vector of France, then

v(Rome)− v(Italy) + v(France)

results in the vector of Paris. That is amazing, isn’t it? To convince the reader about
this amazing relationship, consider the following examples:

In [47]: nlp = nlp()

nlp.analogy(model,'italy','denmark','rome')

Out[47]: 'copenhagen'

In [48]: nlp.analogy(model,'spain','netherlands','madrid')

Out[48]: 'amsterdam'

Note that the embedding has associated to the Netherlands the city Amsterdam: in
principle, that is correct, but that would be wrong if we were to consider capitals.
Another example is the following one, which perfectly shows a good match between
animals and food:

In [10]: nlp.analogy(model,'banana', 'cheese', 'monkey')

Out[10]: 'goat'

As a final exercise, let us try to plot a list of words based on their similarity values
obtained from the embeddings. This can be easily done using the egeaML object
display_similarity, which performs PCA for dimensionality reduction, and takes two

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 137 — #155
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 137

Figure 4.1: Clusters of selected words, based on their similarity retrived by the
Word2Vec model.

arguments: the model and the list of words we are interested in. Results are shown
in Figure 4.1. We clearly see there is a cluster made by all countries, and closer
countries seem to be geographically related as well. Another interesting cluster is the
one on the left, which can be identified as the one related to political and economical
events. On the right, instead, we clearly identify famous sportsmen. A little remark
on the words usa and china: they are not fully clustered as country, since they seem
to be strictly related to the cluster we defined as related to political and economical
events. This makes sense, since those two countries are the two biggest economy in
the world.

In [5]: mywordlist = ['powell', 'russia', 'colombia', 'audi', 'bmw',

'ronaldo', 'nasdaq', 'clinton', 'nixon', 'reagan',

'bush', 'kissinger', 'carter', 'messi', 'maradona',

'immigration', 'greece', 'buffon', 'schumacher',

'italy', 'france', 'usa', 'germany', 'china', 'prost',

'senna', 'buffon', 'war', 'zidane', 'dollar',

'gold','oil', 'unemployment', 'brazil', 'snake','wall',

'tech', 'financial', 'industry', 'detroit','horse',

'lion', 'monkey', 'frog', 'dog', 'cow',

'spain', 'denmark']

nlp.display_similarity(model, mywordlist)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 138 — #156
�

�

�

�

�

�

138 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

Paragraph Continuous Vector Representations

In this subsection, we have introduced and discussed a popular way to learn contin-
uos fixed-length distributed vector representations of words. In 2014, Mikolov and
Le proposed a more sophisticated approach, called Doc2Vec, which allows to learn
distributed vectors from pieces of texts. The advantage of using Doc2Vec is that each
document is now represented by a dense vector, which is then use to predict words,
or to perform text classification.
The idea is very similar to the one used in Word2Vec but here, every paragraph is
mapped into a unique dense representation vector, represented by a concatenation
between a unique paragraph token, extracted from matrix D, and word vectors ex-
tracted from the word matrix W. While the former is shared across all words gener-
ated from the same document, the latter is shared across documents.
We will not go into the details of this interesting model, so please refer to the afore-
mentioned paper for further details. In the following, we will briefly discuss this
methodology based on a toy example.

In [6]: import csv

import random

from gensim.models.doc2vec import Doc2Vec, TaggedDocument

from egeaML import nlp

Using TensorFlow backend.

We read some data, created ad hoc for this illustration. You find it on the data folder
in the book-specific GitHub repository, under the name doc2vecdocs.txt. We read
the file, and create a list of paragraphs from it.

In [7]: with open('doc2vec_docs.txt') as f:

reader = csv.reader(f, delimiter='.')

csv_rows = list(reader)

docs = [item for sublist in csv_rows for item in sublist]

For each paragraph document, we perform the usual cleaning before feeding it into
the model. Note that Doc2Vec requires each document to be represented as a con-
catenation between its corresponding words vectors and its paragraph token, so we
create a list of tagged documents, using the egeaML method tagging_doc2vec, which
returns a list of tagged words, one for each document.

In [8]: doc = [nlp().clean_text(x) for x in docs]

tagged = nlp().tagging_doc2vec(doc)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 139 — #157
�

�

�

�

�

�

4.1. INTRODUCTION TO NATURAL LANGUAGE PROCESSING 139

We now fit the Doc2Vec model, using the function Doc2Vec from gensim. Here the
parameter vector_size stands for the the length of the feature vector representation,
window describes the maximum distance between the current and predicted word
within a paragraph, min_count ignores all words with total frequency lower than
the provided number, and epochs describes the number of iterations over the corpus
of documents.

In [9]: model = Doc2Vec(vector_size=100, window=10, min_count=2,

workers=-1, epochs=10)

model.build_vocab(tagged)

model.train(tagged, total_examples=model.corpus_count,

epochs=model.epochs)

As a use-case, we perform similarity retrieval between documents, based on the dis-
tributed representations of the training documents. Note that one might take unseen
data, and try to retrieve the same similarity on it. This means that the inferred vector
is going to be the new document in the required format (i.e. splitted list of prepro-
cessed words).

In [10]: id = random.randint(0, len(tagged)-1)

inferred_vector = model.infer_vector(tagged[id].words)

similarities = model.docvecs.most_similar([inferred_vector],

topn=len(model.docvecs))

In [11]: print(' Most Similar Documents with Document %s which text is:\n %s\n' % (id,
docs[id]))

for label, index in [('TOP SIMILAR', 0),
('SECOND MOST SIMILAR', 1),
('THIRD MOST SIMILAR', 2),]:

print('%s %s:\n «%s»\n' % (label, similarities[index],
''.join(docs[similarities[index][0]])))

Most Similar Documents with Document 118 which text is:
The more data that is fed into it — whether images of terrorist insignia or
harmful keywords — the more the machine learning technology learns and improves

TOP SIMILAR (27, 0.22756348550319672):
« Typically, the generative network learns to map from a latent space to a data
distribution of interest, while the discriminative network distinguishes candidates
produced by the generator from the true data distribution»

SECOND MOST SIMILAR (75, 0.2103119045495987):
« Deep learning based on superficial features is decidedly not a tool
that should be deployed to “accelerate” criminal justice;

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 140 — #158
�

�

�

�

�

�

140 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

attempts to do so, like Faception’s, will instead perpetuate injustice»

THIRD MOST SIMILAR (119, 0.1768016815185547):
« Without enough training data, the system does not know what to look for»

Interestingly, the model has learnt that we are speaking about a topic related to ma-
chine learning, more specifically to image recognition, and therefore he has returned
the similarity with a document that speaks about GANs (top similar), a document
that speaks about criminality and Faception, which is a facial personality analytics
technology company (second similar), and finally to a generic paragraph related to
machine learning model’s training.

4.2 Introduction to Deep Learning

In the last ten years, deep learning has become somehow a buzzword in the machine
learning community, sometimes extremely abused, but generally most of the prac-
titioners do not even know what this term means! Notably, they tend to wrongly
separate the two fields, altough we should highlight that they are strongly related
to each other. Generally speaking, with the term deep learning we indeed refer to a
branch of machine learning that typically deals with artificial neural networks, such
as the one represented in Figure 4.2.

x1

x2

x3

x4

ŷ

Hidden
Layer

(1)

Hidden
Layer

(2)

Input
Layer

Output
Layer

Figure 4.2: Representation of a Neural Network Architecture with two hidden layers.

More specifically, a deep learning mode is a machine learning algorithm that takes
in, as input, a features vector X used to predict the dependent variable y. Hence, it is

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 141 — #159
�

�

�

�

�

�

4.2. INTRODUCTION TO DEEP LEARNING 141

a supervised learning model but works differently from the models we have seen so
far. Their structure is made of three main components, which are referred as

• the input layer, which takes in a numerical representation of the data;

• the hidden layer, where computations take place, and which plays the role of
black-box inside the model, and

• the output layers, which outputs the predictions of the model.

We will not deep into the structure of artificial neural networks here: the interested
reader might refer to the book of Courville et al. (2017) or the one by Chollet (2017)
to deep the theory and structure behind this family of algorithm.
The aim of this Section is to introduce the reader to a simple application of deep
learning using the Keras API, firstly proposed by Chollet et al. (2015) and nowadays
available with the stable release 2.2.4. Keras is a high-level neural networks API,
capable of running on top of Tensorflow, Theano, or CNTK. It is one of the most
user-friendly API for deep learning, and it can also be run on both CPU and GPU.
Please refer to the available documentation to properly install it using pip or conda:
https://keras.io.

In [1]: import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from egeaML import neural_network

from sklearn.metrics import classification_report

from sklearn.datasets import make_classification, make_circles

Using TensorFlow backend.

In [2]: #keras modules
from keras.models import Sequential
from keras.layers import Dense,Dropout, BatchNormalization, Activation
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping
from keras.utils.np_utils import to_categorical

Let us begin with a very simple example: a dataset linearly separable in two classes.
This is a very simple binry classification task, and we would like to solve it using the
deep learning architecture.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 142 — #160
�

�

�

�

�

�

142 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

Figure 4.3: A linear separable dataset for Classification.

In [3]: X, y = make_classification(n_samples=1000, n_features=2,

n_redundant=0, n_informative=2,

random_state=7,

n_clusters_per_class=1)

neural_network.plot_data(X,y)

The easiest way of creating a model in Keras is by using the sequential API, which
allows you to stack one layer on top of the other. Since our toy example shows a clear
linear decision boundary between the two classes, let us try to fit a simple Logistic
Regression model: in this case, we will have the input nodes directly connected to
output node, without any hidden layers. Once the class Sequential is initialized, we
start adding layer using the Dense function in Keras, which constructs a fully con-
nected neural network layer. The function arguments are defined as follows:

• units: it represents the dimensionality of the output space;

• input_shape: it is the starting tensor ingested into the first hidden layer. This
must have the same shape as your training data, that is two.

Note that only the first layer in Keras models need to specify the input dimensions.
The subsequent layers do not need to specify this argument because Keras can infer
the dimensions automatically.

In [4]: model = Sequential()

model.add(Dense(units=1, input_shape=(2,), activation='sigmoid'))

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 143 — #161
�

�

�

�

�

�

4.2. INTRODUCTION TO DEEP LEARNING 143

Note that since we are constructing the output layer, and we said it has only one
node, the units argument is set to be equal to one. Also, we set the activation equal
to sigmoid because the activation function for a Logistic Regression is the logistic
function, also called sigmoid in the computer science community.
The neural network is then compiled using the compile function: this declares the
optimizer to use and the loss function to minimize. Note that also we can specify the
metrics argument, which controls the output metric (for classification problems we
set this as accuracy).

In [5]: model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['accuracy'])

Fitting a model in Keras is pretty straightforward using the method fit on the com-
piled model. Setting the argument verbose equal to zero means we do not print out
the ouput of the model (try by yourself on your local machine if you are interested
to see the output), whereas the epochs argument controls the number of times to go
over the entire training data. This is a key featrure of deep learning models: when
training models we pass through the training data not just once but multiple times!

In [6]: fitting = model.fit(x=X, y=y, verbose=0, epochs=50)

neural_network.plot_loss_accuracy(fitting)

<Figure size 720x432 with 0 Axes>

The next snippet generates the decision boundaries produced by the above one-layer
neural network. The plot is shown in Figure 4.5.

In [7]: neural_network.plot_decision_boundary(lambda x: model.predict(x),X,y)

4.2.1 Dealing with Complex Data into a Neural Network

In the previous example we have been working with a datset which was linearly
separable. Now we work with non-linear data, and train a logistic regression to see
its performance on such dataset.

In [8]: X1, y1 = make_circles(n_samples=1000, noise=0.05, factor=0.3,

random_state=0)

neural_network.plot_data(X1,y1)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 144 — #162
�

�

�

�

�

�

144 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

Figure 4.4: Loss vs Accuracy in Fitting a one-layer NN to a linear separable dataset.

Figure 4.5: Decision Boundaries after fitting a one-layer NN on a linear separable
dataset.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 145 — #163
�

�

�

�

�

�

4.2. INTRODUCTION TO DEEP LEARNING 145

Figure 4.6: Fitting a Logistic Regression on such data would lead to an inconsistent
estimator.

Since we want to train a logistic regression model on this new set of data, we proceed
as before.

In [9]: model1 = Sequential()

model1.add(Dense(units=1, input_shape=(2,) , activation='sigmoid'))

model1.compile(optimizer='adam',loss='binary_crossentropy',

metrics=['accuracy'])

training1 = model1.fit(x=X1,y=y1,verbose=0, epochs=50)

y_pred1 = model1.predict_classes(X1, verbose=0)

In [10]: neural_network.plot_loss_accuracy(training1)

<Figure size 720x432 with 0 Axes>

The classifier we have choosen is not a good one, since the accuracy is approximately
50%: this means that wee are missclassifying half of the points, due to the nonlinear
behaviour of the dataset.
To fit a neural network on a non-linear dataset, we only need to add more layers to
the structure we have just fitted. This is because the output of one layer becomes
the input of the next. Keras again does most of the dirty lifting by initializing the
weights and biases, and connecting the output of one layer to the input of the next.
We only need to specify how many nodes we want in a given layer, and the activation
function.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 146 — #164
�

�

�

�

�

�

146 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

Figure 4.7: Loss vs Accuracy by a one-layer neural network (for different epochs) on
a non-linear dataset

In [11]: model11 = Sequential()

model11.add(Dense(units=4,input_shape=(2,),activation='tanh'))

model11.add(Dense(2, activation='tanh'))

model11.add(Dense(1, activation='sigmoid'))

model11.compile(Adam(lr=0.01), loss='binary_crossentropy',

metrics=['accuracy'])

his = model11.fit(x=X1,y=y1, verbose=0, epochs=100)

y_pred1 = model1.predict_classes(X1, verbose=0)

In practice, we have added a layer with four nodes and tanh activation function. We
then add another layer with two nodes again using tanh activation. We finally add
the last layer with one single node and sigmoid activation. This is the final layer
that we also used in the logistic regression model. This is not a very deep neural
network, as it only has three layers: two hidden layers, and the output layer. But
notice a couple of patterns:

• Hidden layers use thetanh activation function. If we added more hidden layers,
they would also use tanh activation.

• The number of nodes decreases in each subsequent layer. It is good practice to
have less nodes as we stack layers on top of one another.

The following snippet produces Figure 4.8, which is shown below.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 147 — #165
�

�

�

�

�

�

4.2. INTRODUCTION TO DEEP LEARNING 147

In [12]: neural_network.plot_decision_boundary(

lambda x: model11.predict(x), X1, y1)

Figure 4.8: Decision boundaries after having fitted a dense neural network with three
layers.

4.2.2 Multiclass classification

In the previous sections we worked on binary classification. Now we will take a look
at a multi-class classification problem, where the number of classes is more than two.
Without loss of generality, we will deal with a three-classes example, but please do
note that this approach might be extended to a much greater number of classes.

In [13]: X2, y2 = neural_network.make_multiclass(k=3)

When dealing with multi-class problems, we use th Softmax Regression, which gen-
eralizes the Logistic Regression model with more than two classes. Note that Logis-
tic Regression is used for binary classification problem, and therefore uses a logistic
function to get the hard probabilities of classification. However, with Softmax Re-
gression, we use the softmax function: in this case, the classification probabilities are
normalized among the classes, which might be weighted. In Keras, for any binary
classification problem, we minimize the binary_crossentropy, whereas in the multi-
class case, the loss function to minimize is denoted ascategorical_crossentropy. See

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 148 — #166
�

�

�

�

�

�

148 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

Figure 4.9: Scatter Plot of data concerning a three-class classification problem.

Murphy (2012) for further details on this difference.
Note also that for the fitting phase, in a Softmax Regression the labels need to be in
one-hot representation.

In [14]: model = Sequential()

model.add(Dense(output_dim=3,input_shape=(2,),activation='softmax'))

model.compile('adam','categorical_crossentropy',metrics=['accuracy'])

In [15]: fitting = model.fit(X2, to_categorical(y2), verbose=0, epochs=20)

neural_network.plot_loss_accuracy(fitting)

neural_network.plot_multiclass_decision_boundary(model, X2, y2)

Obviously, there are important differences between a binary Logistic Regression and
a multiclass Softmax Regression. Even fitting a simple Softmax Regression to such
data, the performances are not good enough, suggesting that a more dense neural
network is required.

In [16]: y_pred = model.predict_classes(X2, verbose=0)

print(classification_report(y2, y_pred))

precision recall f1-score support

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 149 — #167
�

�

�

�

�

�

4.2. INTRODUCTION TO DEEP LEARNING 149

0.0 0.42 0.31 0.36 500

1.0 0.55 0.67 0.60 500

2.0 0.53 0.55 0.54 500

accuracy 0.51 1500

macro avg 0.50 0.51 0.50 1500

weighted avg 0.50 0.51 0.50 1500

Likewise, let us build a deep Artificial Neural Network (ANN) for multiclass classi-
fication. To do so, we only need to add more Dense layers, as we did in the previous
section. In this example, we add just a couple of Dense layers with tanh activation
function.

In [18]: model = Sequential()

model.add(Dense(64, input_shape=(2,), activation='tanh'))

model.add(Dense(32, activation='tanh'))

model.add(Dense(16, activation='tanh'))

model.add(Dense(3, activation='softmax'))

model.compile('adam', 'categorical_crossentropy',

metrics=['accuracy'])

y_cat = to_categorical(y2)

history = model.fit(X2, y_cat, verbose=0, epochs=50)

Figure 4.11 shows the performances of this model, in terms of confusion matrix: the
result is quite remarkable, with an accuracy of approximately 99%!

In [19]: neural_network.plot_multiclass_decision_boundary(model, X2, y2)

y_pred2 = model.predict_classes(X2, verbose=0)

neural_network.plot_confusion_matrix(model,y2,y_pred2)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 150 — #168
�

�

�

�

�

�

150 CHAPTER 4. AN INTRODUCTION TO MODERN ML TECHNIQUES

Figure 4.10: Decision Boundaries on a three-class problem produced by a dense neu-
ral network.

Figure 4.11: Confusion Matrix for a three-class classification problem produced by a
dense neural network.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 151 — #169
�

�

�

�

�

�

Appendices

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 152 — #170
�

�

�

�

�

�

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 153 — #171
�

�

�

�

�

�

Appendix A

A crash course in Python

A concise guide on programming skills in Python is here proposed. The objective is
twofold: on the one hand, we will briefly cover all the fundamental building blocks
that are strictly necesssary to fully appreciate the algorithms proposed in this book.
Indeed, at the end of this appendix, the reader is expected to have gained a solid
knowledge and understanding of the Python language, which is indeed a crucial as-
set if one aims to develop her own model.
On the other hand, the book is based on a book-specific library, called egeaML, avail-
able on the GitHub book-specific repository. It consists of a series of methods, used
throughout the book, and hence it is important to get into the fundamentals block
of Object-Oriented Programming: its understanding, I believe, is absolutely important
not only for anyone who wants to deepen his knowledge in Computer Program-
ming, but also for any modern machine learning scientist and engineer who wants
to develop analytical softwares.

A.1 Building Blocks in Python

A.1.1 Variables

The most basic building block in Python is the variable: a variable is essentially a box
that we can stick a name on, and then we can refer back to it anywhere else in the
file. For example, we can create a box, call it a, and assign the integer 5 to it. What
we are doing here is just creating a box with the name a and putting the value 5 into
it.

In [1]: a=5

153

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 154 — #172
�

�

�

�

�

�

154 APPENDIX A. A CRASH COURSE IN PYTHON

We can, for instance, create a new variable, called my_sum, which simply adds 56 to
the variable a, as follows:

In [2]: my_sum=a+56

Note that variable names could contain letters, special caracters like underscore, and
numbers. But be careful: some characters cannot be placed as initializer of your
variable. For instance, numbers cannot appear at the beginning of the variable name,
as well as amperstand or dollar signs are not allowed. We can also define variables
defined as strings, such as

In [3]: string_var = 'My name is'

In [4]: name = 'Bob'

Firstly, note that strings are enclosed in quotes. For Python, that word is just a set
of characters, and it does not know this is a proper word; it just knows that this is
a six-length characters element. We can also print these things out, with the print
method, which will print out the value of my variable to the console

In [5]: print(string_var + ": " + name)

My name is: Bob

A print is a method, it is just an action, different from the variable. While a variable
defines a piece of data, the method on that variable just perfom an action on that
piece of data: in this case, print shows on the console the variable we inserted as
input. Luckily, the print method is not the only method available in Python.
Note that in order to define a string, we can indistinguishingly use either double or
single quote, but sometimes we need to use them togetherself, like as follows:

In [6]: sentence_1 = "He told me 'Would you like a coffe?'"

In [7]: print(sentence_1)

By dealing with the print method, it should be now clear that a method always refers
to an action (i.e. the print method prints something out to the console). The aim of
this section is to show other methods, such as the input method, and then showing
how to create your own method. If your software could only use the print method,
you would probably get very bored, wouldn’t you?

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 155 — #173
�

�

�

�

�

�

A.1. BUILDING BLOCKS IN PYTHON 155

A.1.2 Methods

The Input Method

The input method is a built-in function that allows the system to ask iteratively a set
of questions to the software user. They are used, for instance, in chatbots, where the
user inserts some information to access to a specific functionality. More specifically,
the input method prints out into the console a message, and the user is then require
to enter some information to get to the next message (or possibly to the desired out-
put).

In [8]: num1 = int(input('Please enter an integer value: '))

num2 = int(input('Please enter another integer value: '))

print(num1, '+', num2, '=', num1 + num2)

Please enter an integer value: 10

Please enter another integer value: 30

10 + 30 = 40

Creating you own method

Before jumping into the methods, let’s introduce another fundamental building
block in Python: the def keyword. Such a built-in keyword is used to define user-
defined functions, and therefore can be exploited to construct our own method.
The definition of our own method requires (at least) basically three components:

• the function header, which begins with the keyword def, and contains the
method name;

• the main body, whoch contains the instruction run by the method;

• the return keywork, in case we would like to have a productive function, or a
print in case we would be interested in a void function.

See the book Learning Python - Vol 1 by Clerici et al. (2019) for further details. Note
that the main body might also contain docstring, which serves as a function docu-
mentation, i.e. describes what the function does, and then there is the actual code
performing what the function does.
In the next code, a function that computes the square of a real number is proposed.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 156 — #174
�

�

�

�

�

�

156 APPENDIX A. A CRASH COURSE IN PYTHON

In [9]: def square(x):

""" This function returns the square of x"""

new_value = x ** 2

return new_value

In [10]: square(2)

Out[10]: 4

The String Format Method

This method is very useful is ones aim to concatenate variables within a string
through positional formatting.

In [11]:n = "Bob"

t = "8 p.m."

print("Hello {}!! Are we gonna meet at {}?".format(n,t))

Hello Bob!! Are we gonna meet at 8 p.m.?

A.2 Data Structure in Python

A.2.1 List and Tuples

We have discussed about variables, but what we have noticed is that we were creat-
ing a variable for every value! This could be a problem: say you have a large number
of variables that describe the grades one has gotten at the exams. A student could
have many grades, for instance

In [12]:grade_1 = 26

grade_2 = 27

grade_3 = 28

and you want to compute the average grade of a student. We know that an average
is the sum of the elements divided by the number of elements in the sample. This
translates in Python as follows:

In [13]:print((grade_1+grade_2+grade_3)/3)

27.0

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 157 — #175
�

�

�

�

�

�

A.2. DATA STRUCTURE IN PYTHON 157

Now suppose that a new session comes out, a you take a new exam

In [14]:grade_4 =28

print((grade_1+grade_2+grade_3+grade_4)/4)

27.25

but this is not really sustainable. Ideally, what we would have is a way to keep
adding grades without the need of creating more varaibles. Luckily, this is possible
in Python, using what is called a list. A list is a container of objects, that has the
property of being mutable and iterable.

In [15]:grades = [26,27,28,28]

average_grades = sum(grades)/len(grades)

print(average_grades)

27.25

What does this practically mean? In this way we have a very dynamic way to com-
pute the average. Lists therefore allow one not only to write a better and cleaner
code, but also to speed up the data analysis process.
However, there are also what are called tuples. Tuples differ from the list in the sense
they are immutable, we cannot increase the size of a tuple!!

In [16]: tuple_grade = (26,27,28,28) #immutable

We could obviously increase the size of a tuple from the beginning, but there are
ways for our code to increase the size of grades. For instance, lists can be mutated
by using the append method: with that, we are able to increase the size of a list, as
follows

In [17]: grades.append(29)

grades

Out[17]: [26, 27, 28, 28, 29, 29]

However, there is no way to increase the size of a tuple, becuase they are immutable!
Obvioulsly, tuples can be made dynamic with a little trick:

In [18]: tuple_grade = tuple_grade + (29,)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 158 — #176
�

�

�

�

�

�

158 APPENDIX A. A CRASH COURSE IN PYTHON

In [19]: (26,27,28)+(28,)

Out[19]: (26, 27, 28, 28)

We haven’t changed the tuple! What we have done is just adding to the tuple a
new tuple, and creating a new object. Note that the comma is necesasary, otherwise
Python is going to read it as a number, but instead should be considered as a tuple.

A.2.2 Sets

You could also have a set of grades: this set is a collection of unique and unordered
items. In principle, you could have repeated items inside the set but once you print
them, only unique values will be shown. This implies having unordered features, in
the sense that the output we get from a print method is completely random; this is
not true for lists, where the first element will always appear at the beginning once
printed.

In [20]:set_grades= {26,27,28,28,21}

In [21]:print(set_grades)

{26, 27, 28, 21}

For sets, we can add elements witht the add method

In [22]: set_grades.add(30)

print(set_grades)

{26, 27, 28, 30}

A.2.3 Dictionaries

Dictionaries are a sort of list but with a very nice property, which we will se in a
few moments. They are not tuples, since they are mutable, and they have something
similar to an order, so they cannot be considered as a proper generlization of the sets,
even because, by structure, multiple identical items are allowed in dictionaries.
We can note that none of the previous data structure were able to index each specific
element. In other words, we would love having a key for each element in that set,
that is a description for each value shown in the dictionary. This is done in Python

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 159 — #177
�

�

�

�

�

�

A.3. LOOPS IN PYTHON 159

using dictionaries, which are defined as a key-value set.
Without loss of generality, we now show a Dictionary with two key, say names that
correspond to students, and their corresponding grade in Computere science exam.
In particular, those values are given in terms of lists.

In [23]:my_dict = {'name':['Bob','Frank','Maria'],

'grades':[26,27,28]}

The elements are still unordered but now they are in their own anymore, they are
separated by a semicolon and there is a relationship between the key and the value:
thanks to this relationship we are able to store data. Dictionaries are mutable, and
we can therefore modify their structure. In general, if we want to access to keys, we
have to do as follows:

In [24]:my_dict['name']

Out[24]: ['Bob', 'Frank', 'Maria']

We can add new values to the given keys, as follows

In [25]:my_dict['students'].append('Anna')

my_dict['grades'].append(28)

Coming back to the list average example, where we have computed the average score
from a list of exam scores, we now compute the same quantity from a dictionary

In [26]: float(format(sum(my_new_dict['grades'])/4,'.2f'))

Out[26]: 27.25

A.3 Loops in Python

A.3.1 The For Loop

In any programming language, loops are very useful iterative structures to execute
several times the same task. The simplest logic for writing a loop is illustrated by the
following example, which prints out the integers from 0 through 6, included:

In [27]:my_list = []

for c in range(7):

my_list.append(c)

print(my_list)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 160 — #178
�

�

�

�

�

�

160 APPENDIX A. A CRASH COURSE IN PYTHON

[0,1,2,3,4,5,6]

Another example is the following one: we are going to create a new list, called
squared, which takes the square of the 1-dim vector my_list element-wise.

In [28]:my_list = [1,2,3,5,6,9]

squared = []

for i in my_list:

a = i**2

squared.append(a)

print(squared)

[1, 4, 9, 25, 36, 81]

A.3.2 The While Loop

While the for loop is a loop based on a counter, the while one is based essentially on
a condition. In particular, a while loop os made up two parts:

1. The while clause with a condition, of which the true or false value occur;

2. A body that is repeated until the condition is False

Note that a while loop requires an exit condition, otherwise the iterative structure
defined as such is going to be run forever and ever! As an illustration, we write
a program that asks to insert some information regarding a client; the request stop
whenever the user correctly insert them.

In [29]:while True:

int(input("Enter the user bank account number "))

input("Enter his name: ")

input("Enter the password: ")

keep_going = input("Continue? (y/n)").lower()

if keep_going == 'n':

break

Enter the user bank account number 3465123

Enter his name: Bob

Enter the password: abracadabra

Continue? (y/n) n

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 161 — #179
�

�

�

�

�

�

A.4. ADVANCED DATA STRUCTURE IN PYTHON 161

A.4 Advanced Data Structure in Python

A.4.1 List comprehensions

So far we have used lists, as the one given below, which shows integrs from zero to
four.

In [30]:my_list = [0,1,2,3,4]

We can get the same result using the so-called list comprehension, which is a particular
way to write an interative structure in Python - we say that list comprehensions are
the Pythonic way of writing a for loop.

In [31]:my_py_list = [n for n in range(5)]

Well, let’s try to understand its logic behind the hood. Basically, it is a for loop, and
n is going to be the first element of that loop, which is then stored into a list by
enclosing everything in square brackets, that is it tells python to put n in a list. It is
basically a for loop, as the following one:

In [32]:def my_list(num):

"""Returns a list of integer numbers from a range"""

my_list = []

for n in range(num):

my_list.append(n)

return my_list

my_list(5)

Out[32]: [0, 1, 2, 3, 4]

Hence, we can enclose in a list comprehesion any object (or any action or instruction)
we could think of. Take, for instance, the square function (we saw in Section A.1) and
apply it to a range of number:

In [33]:def power(num, power=2):

"""Returns the square of a list of values.

We could also change the power of the function."""

squared_list = []

for n in range(num):

val = n**power

squared_list.append(val)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 162 — #180
�

�

�

�

�

�

162 APPENDIX A. A CRASH COURSE IN PYTHON

return squared_list

power(5)

Out[33]: [0, 1, 4, 9, 16]

The same thing can be written in terms of list comprehensions.

In [34]:squared_list = [x**2 for x in range(5)]

print(squared_list)

[0, 1, 4, 9, 16]

We have gotten each element of the iterable squared! Now we are going to see how
to add conditions within a list comprehension. For instance, we would like to return
a list that takes, from the range(10), just the even numbers or better the numbers with
remainder equal to zero whenever divided by two.

In [35]:evens = [n for n in range(10+1) if n%2==0]

evens

Out[35]: [0, 2, 4, 6, 8, 10]

Equivalently, using our own method even(), we get the same result:

In [36]: def even():

num = int(input("Enter a number: "))

evens = []

for n in range(num+1):

if n%2==0:

evens.append(n)

return evens

even()

Enter a number: 10

Out[36]: [0, 2, 4, 6, 8, 10]

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 163 — #181
�

�

�

�

�

�

A.4. ADVANCED DATA STRUCTURE IN PYTHON 163

A.4.2 Lambda Functions

Let us consider the following list of integers:

In [37]: nums = [48,6,9,21,3]

We would like to create a function that squares that number. How can we do that?
We might create our method, as we did before:

In [38]:def square(nums):

square = []

for x in nums:

square.append(x**2)

return square

square(nums)

Out[38]: [2304, 36, 81, 441, 9]

Alternatively, we can use the so-called anonymous functions, which in Python refer
to the lambda functions: they are not just pythonist, but they are used in other lan-
guages, such as Java.

In [39]:(lambda x: x**2, nums)

Out[39]:(<function __main__.<lambda>(x)>, [48, 6, 9, 21, 3])

We have created a new function, a lambda function, that applies to the list nums.
But how can I unpack the results from my function? Well, anonymous functions are
unpacked with the map() function. Map is going to apply the square() function to
each element of the list vector. However, note that the map() itself is not sufficient to
unpack the lambda. We must call the list() method to see the result.

In [40]:list(map(lambda x: x**2, nums))

Out[40]:[2304, 36, 81, 441, 9]

We close the section with another example using lambda functions. However, dif-
ferently from before, we are not going to apply the map() to each single element;
instead, we are going to filter out all the members of the list that do not satisfy the
requirement. In this case, we are going to ask the user a number, and then checking
its proper divisors, which are going to be stored in another list.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 164 — #182
�

�

�

�

�

�

164 APPENDIX A. A CRASH COURSE IN PYTHON

In [41]: num = int(input("number: "))

divisors = []

for n in range(2,num):

if num%n ==0:

divisors.append(n)

else:

pass

print(divisors)

number: 12

[2,3,4,6]

In [42]:print(list(filter(lambda x: num%x==0, range(2,num))))

Out[42]:[2,3,4,6]

A.5 Advanced Concepts on Functions

A.5.1 The magic of Wildcards into Function’s arguments

This section aims at answering to a simple question: How can we deal with multiple
and unforseen arguments inside a function?

Flexible Arguments

Suppose you want to write a function but you don’t know how many arguments the
function requires. Take for instance the following example:

In [43]:def average_grades(e1,e2,e3):

return (e1+e2+e3)/3

print(average_grades(28,26,24))

26.0

But then you take more exams, and so you have to take care of the denominator and
the arguments in the sum! Luckily, in Python we have a smartest way to do that, and
that is with flexible arguments, called args.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 165 — #183
�

�

�

�

�

�

A.5. ADVANCED CONCEPTS ON FUNCTIONS 165

In [44]:def average_grades_flex(*args):

tot_exams = 0

for n in args:

tot_exams +=1

return sum(args)/tot_exams

print(average_grades_flex(28,26,24))

26.0

Flexible Keyword Arguments

Typically, we refer to args if one wants to use non-keyworded variables inside the
function. But what about having to deal with keyworded arguments? In that case,
we use the *kwargs argument, which allows you to handle named arguments in a
function. To understand what kwargs are, let us consider the following example.

In [45]:def what_are_kwargs(*args, **kwargs):

print(args)

print(kwargs)

what_are_kwargs(10,20,30)

(10, 20, 30)

{}

We see that we have gotten an empty dictionary. This should not come as surprise.
Indeed, kwargs are used for keyworded arguments, and therefore are structured, by
default, as a key-value object. If, for instance, we add two keyworded arguments,
such as name and job, we now see they appear in the initializded dictionary.

In [46]: what_are_kwargs(10,20,30, name='James', job='Teacher')

(10, 20, 30)

{'name': 'James', 'job': 'Teacher'}

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 166 — #184
�

�

�

�

�

�

166 APPENDIX A. A CRASH COURSE IN PYTHON

Example: Total Monthly Wage

Let’s see a practical example to better understand this concept.

In [47]:def total_wage(pay_hour,hours,working_days):

""" Returns the monthly wage"""

val = hours*pay_hour*working_days

return val

print("I have earned a gross salary of e",

format(total_wage(25,8,22),'.2f'))

I have earned a gross salary of e 4400.00

That function is fine, since it computes the monthly gross salary, but we are not
taking into account extra worked hours, or even taxes!

In [48]: def taxes():

""" Returns the taxes to be paid, based on the wage"""

monthly_income = float(input("How much do you earn? "))

taxes = 0

if monthly_income <= 1500:

taxes = 0

elif monthly_income <= 2400:

taxes = monthly_income*0.15

elif monthly_income <= 3800:

taxes = monthly_income*0.25

elif monthly_income <= 4900:

taxes = monthly_income*0.3

else:

taxes = monthly_income*0.5

return taxes

def total_wage_full(pay_hour,hours,working_days,

extra_hours,extra_pay,taxes):

""" It returns the net monthly wage"""

val = hours*pay_hour*working_days +

extra_hours*extra_pay -taxes

return val

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 167 — #185
�

�

�

�

�

�

A.5. ADVANCED CONCEPTS ON FUNCTIONS 167

In [49]: print("I have earned a net salary of e",

format(total_wage_full(25,8,22,10,29,taxes()),'.2f'))

How much do you earn? 4400

I have earned a net salary of e 3370.00

Luckily in Python we have a very dynamic and flexible way to do that: use the
keyword *args!

In [50]: def total_wage_full(pay_hour,hours, working_days,*args):

val = hours*pay_hour*working_days +

args[0]*args[1] - args[2]

return val

In [51]: print("I have earned a net salary of e",

format(total_wage_full(25,8,22,10,29,taxes()),'.2f'))

How much do you earn? 4400

I have earned a net salary of e 3370.00

Suppose we want to add also the employee name, job title and fiscal year to that
list. In order to add keyword arguments in a flexible manner, ther is the keyword
*kwargs, which replicates the *args keyword in its syntax.

In [52]: def total_wage(pay_hour,hours,working_days,*args,**kwargs):

val = format(hours*pay_hour*working_days +

args[0]*args[1] - args[2], '.2f')

message = "{} has earned a net salary of e {}

with her job of {} in {}."

.format(kwargs['name'],val,

kwargs['job'],kwargs['year'])

return message

print(total_wage(25,8,22,10,29,taxes(),

name='James', job='Teacher',year='2018'))

How much do you earn? 4400

James has earned a net salary of e 3370.00 with her job of

Teacher in 2018.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 168 — #186
�

�

�

�

�

�

168 APPENDIX A. A CRASH COURSE IN PYTHON

A.5.2 Local vs Global Scope in Functions

We go into what is called the scope in functions: not all objects are accessible every-
where in a script. To begin with, we have two main scope:

• Global Scope: defined in the main body of a script;

• Local Scope: defined inside a Function;

• Built-in-scope: names in the predefined builtins module.

Local scope means that once the execution of the function is done, any name inside
it cease to exist, and you cannot access to them anymore. In the next snippet, the
variable new_value is defined locally, and hence if it is called outside, the user will
get an error.

In [53]:def square(x):

""" This function returns the square of x"""

new_value = x ** 2

return new_value

new_value

Suppose now we have the same function as before but now, instead, the variable
is defined outside the function. This is a global variable, since it can be recalled
anywhere in the script.

In [54]:new_value = 10

def square(x):

""" This function returns the square of x"""

new_value2 = new_value ** 2

return new_value2

square(3)

Out[54]: 100

Note that if the value is not internally defined, then we look for global values (the
other way round does not apply). To recap, when we reference a name, first local
scope is searched, then the global; if the name is in neither, then the built-in scope is
searched. Please check the book of Lutz (2013) for further details on this topic.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 169 — #187
�

�

�

�

�

�

A.6. INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 169

The Global Keyword

We can tell Python to use a global variable inside a method by using the keyword
global: in this case, Python is looking for the variable outside the method, and use it.
Furthermore, it can also be updated, since the local variable is now the global one,
as follows:

In [55]: new_value = 10

def square(x):

""" This function returns the square of x"""

global new_value

new_value = new_value ** 2

return new_value

square(3)

Out[55]: 100

In [56]: print(new_value)

100

A.6 Introduction to Object-Oriented Programming

To fully appreciate the importance of this topic, let’s first understand why we need
Object-Oriented Programming (OOP). In general, data analytics softwares are very
complex programs, which are defined as a sequence of instructions that manipulate
data in a meaningful way. As an example, suppose we want to create a program that
computes the average grade of a Student. We could, for instance, write the following:

In [57]: grades = input("Tell me your grades,

separated by commas: ").split(',')

def average_grades(grades):

tot = 0

for n in range(len(grades)):

grades[n] = int(grades[n])

tot +=grades[n]

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 170 — #188
�

�

�

�

�

�

170 APPENDIX A. A CRASH COURSE IN PYTHON

avg = format(tot/len(grades), '.2f')

return avg

print(average_grades(grades))

Tell me your grades, separated by commas: 26,27,29

27.33

But now the question is: how do we manage the building procedure of a more com-
plex software? Suppose that we are not just interested in computing the average
grade of a Student, but we also want to store her personal information, like age,
name, surname, gender, and so on, possibly repeating it infinitely-many times. How
do we accomplish this task? In other words, if you want to represent a person, with
some features, none of the built-in functions would allow to do that. In Python, we
make use of the OOP paradigm: we can say that OOP is a methodology that allows
to design and develop large software projects easier and more intuitively.

A.6.1 Objects, Classes and Attributes

In general, a program is made by different objects. In Python, we have many kind
of objects. We have sequences (like strings, lists and tuples), dictionaries, methods
but even variables. More precisely, we can say that an object is characterized by a
type, some attributes and some methods, that allow to manipulate and use the object
itself.
In Python, to create an object we use classes: they define a type object, and from a
single class we can create many unique objects, which will share some common char-
acteristics, but they are uniquely identified by the values assigned to the attributes
of the class! A class notably tells python how an object should be defined, but it
does not actually create it. The process of creating an object from a class is called
instantiation, which means taking a class, and creating an object from it with spe-
cific attributes. We can say that attributes make unique each object, and they can be
changed without affecting the attributes of other objects created from the same class.
But how do we create a class? We use the keyword class followed by the class name;
everything after the colon will be indented into the class, and it will be specific to
that class.

In [58]:class Student:

pass

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 171 — #189
�

�

�

�

�

�

A.6. INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 171

But we all know that a student has specific characteristics, like name, age, school,
and so on. Hence, we assign them to the class by using the init method: it is called
initializer because whenever an object is created, its attributes automatically get the
default value given in the init method. Note that we have to include the self param-
eter so that our initializer has a reference to the new object being initialised, which
basically plays the role of connector beetween objects inside the class.

In [59]:class Student:

def __init__(self,name,age,school):

self.name = name

self.age = age

self.school = school

self.marks = []

def average(self):

return round(sum(self.marks)/len(self.marks),2)

student = Student("James",20,"MIT")

student.marks.append(26)

student.marks.append(27)

student.marks.append(29)

print(student.average())

27.33

Let’s give some comments to the previous chunk of code. First of all, note that an
instance of the class Student was created by giving some attributes to it, e.g. Stu-
dent(“James”,20,“MIT”).
Secondly, we have added a productive method called average, which computes the
average grade of that student. Defining methods inside classes is very important,
because they make the classes dynamic and useful. This example basically replicates
the one we saw at the beginning of this tutorial, but it is more readable and easier to
understand, isn’t it?
Last but not least, we can access to each attribute of that instance as follows

In [60]:print(student.name)

print(student.school)

print(student.marks)

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 172 — #190
�

�

�

�

�

�

172 APPENDIX A. A CRASH COURSE IN PYTHON

James

MIT

[26, 27, 29]

A.6.2 Subclasses and Inheritance

To introduce this concept, we will focus on a simple example, that describes the stu-
dents involved in a specific Python classroom. We will therefore create a class object,
called PythonSchool, which will contain the people involved (expressed as a list),
and a series of objects inside it. In particular, we will discuss about subclasses and
inheritance: as for the former, we will create two subclasses, say DataScientist and
DataEngineer, which will be strictly dependent on the superclass DataScience, whioch
describe the student involved in the Python classroom devoted to Data Science skills.
In particolar, when we inherit something, it does not mean cloning, right? So we do
as follows: we implement the init method but then, inside it, we call the superclass:
DataScience is therefore the super class, and we call its init method in that way, so
that we inherite the parameters from the super class also in the subclasses. Then,
what happens is that the classes DataScientst and DataEngineer contain everything
that the class DataScience contains. Let us see in practice this pipeline: I will com-
ment each step inside the code for a better readibility and explanation.

In [61]:class PythonSchool:

students = []

#initialization of an empty list of students

def __init__(self, students):

self.students = students

class DataScience:

We initialize the superclass,

which produces a Description of the Student.

def __init__(self, name, age, job):

self.name= name

self.age=age

self.job=job

This describes the actual job

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 173 — #191
�

�

�

�

�

�

A.6. INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 173

self.language = input("Which high-level language

do you use for data science?")

def Description(self):

print("This is", self.name, \

"who has", self.age, "years old", \

"and earns e", format(int(self.income), ','))

Here we introduce two subclasses, say DataScientist

and Data Engineer.

class DataScientist(DataScience):

def __init__(self,name,age,job,hobby):

super().__init__(name,age,job)

self.hobby = hobby

self.dream = int(input("Which position you would

like to apply for? "))

class DataEngineer(DataScience):

def __init__(self,name,age,job,hobby):

super().__init__(name,age,job)

self.hobby = hobby

self.dream = int(input("Which position you would

like to apply for? "))

We now create instances of students

student_list = [

DataScientist("Bob",39,"Software Engineer","Running"),

DataEngineer("Helen",30,"Stack Developer","Cycling"),

DataScientist("James",46,"Consultant","Phylosophy")

]

my_class = DataScience(student_list)

We now create a list containing the descriptions

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 174 — #192
�

�

�

�

�

�

174 APPENDIX A. A CRASH COURSE IN PYTHON

of the students.

my_list = []

for p in my_class.student:

t = ["This is", p.name,

"who is", str(p.age), "years old",

"and uses the software", p.language,

"for Data Science as a",p.job,"."\n

"He loves", p.hobby,

"and he looking for a poistion of",p.dreams]

my_sep = ' '

mess = my_sep.join(t)

my_list.append(mess)

As an advanced in-depth analysis, the interest reader might find on the book-specific
GitHub repository a data science application, namely a .ipynb notebook file, which
describes on how to structure an advanced project using OOP on the mtcars dataset.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 175 — #193
�

�

�

�

�

�

Appendix B

Mathematics behind the
skip-gram model

We wish to minimize Equation 4.1 using gradient descent. Hence, we have the fol-

lowing partial derivatives to compute on log
(

euT
c ·vw

∑v∈V euT
v ·vw

)
:

∂

∂vw
log

(
euT

c ·vw

∑v∈V euT
v ·vw

)
=

∂

∂vw
log

(
euT

c ·vw
)
− ∂

∂vw
log

(
∑

v∈V
euT

v ·vw

)

Let us compute separately the two quantities. The positive term is easy, since we
have to compute the following derivative:

∂

∂vw
log

(
euT

c ·vw
)
=

∂

∂vw

(
uT

c · vw

)

This translates into the following system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂
∂vw1

(u01 · vw1 + u01 · vw2 + . . . + u01 · vwd)

∂
∂vw2

(u01 · vw1 + u01 · vw2 + . . . + u01 · vwd)

.
∂

∂vwd
(u01 · vw1 + u01 · vw2 + . . . + u01 · vwd)

=

⎡
⎢⎢⎢⎢⎣

u01

u02
...

u0d

⎤
⎥⎥⎥⎥⎦ = u0

The negative term is more complicated, and we use the chain rule to compute it.

175

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 176 — #194
�

�

�

�

�

�

176 APPENDIX B. MATHEMATICS BEHIND THE SKIP-GRAM MODEL

∂

∂vw
log

(
∑

v∈V
euT

v ·vw

)
=

1(
∑v∈V euT

v ·vw

) ∂

∂vw

(
V

∑
x=1

euT
x ·vw

)

=
1(

∑v∈V euT
v ·vw

) · ∑
x

euT
x ·vw · ∂

∂vw

(
uT

x vw

)

Merging the two quantities, we have that:

∂

∂vw
log

(
euT

c ·vw

∑v∈V euT
v ·vw

)
= u0 −

V

∑
x=1

euT
x ·vw(

∑v∈V euT
v ·vw

) · ux

= u0 −
V

∑
x=1

p (x|w) · ux

where u0 is the observed representation of the context word, and ux is the expected
vector representation of the context, weighted by the probability of each word in the
vocabulary. Hence, the negative quantity can be understood as the expected context
word according tothe observed vector u.
I leave for the interested reader the exercise to obtain the partial derivatives the loss
function with respect to the context words vc, following the same argument as the
one given here.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 177 — #195
�

�

�

�

�

�

Index

Accuracy, 80

Cross-validation, 27

Deep Learning
Keras, 155
Multi-class Classification, 161

Ensemble, 99
AdaBoost, 111
Bagging, 104
CatBoost, 122
Gradient Boosting, 112
Random Forests, 107
Voting Classifier, 100
XGBoost, 115

F1-score, 82

Kernelized Support Vector Machine, 91

Linear Models
Elastic Net, 70
Huber Regression, 71
Lasso, 67
Logistic Regression, 76
Ordinary Least Square, 60
RANSAC, 74
Ridge, 62

Natural Language Processing
Bag-of-Words, 137

Paragraph Vector Representation,
153

Preprocessing, 132
Similarity, 146
TFIDF, 142

Nearest Neighbor, 18

Precision, 81
Preprocessing

Box-Cox Transformation, 36
Categorical Variables, 38
Imbalanced Dataset, 43
Missing Values, 41
Principal Component Analysis, 49
Scaling, 32
SMOTE, 47
t-SNE, 55

Recall, 81

Shap, 117
Skip-gram model, 149
Support Vector Machine, 86

177

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 178 — #196
�

�

�

�

�

�

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 179 — #197
�

�

�

�

�

�

Bibliography

[1] M Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems. http://tensorflow.org/, 2015.

[2] Robert Andersen. Modern Methods for Robust Regression, volume 152 of Quanti-
tative Applications in the Social Sciences. SAGE, 2008.

[3] Y. Bengio, H. Schwenk, J.S. Senecal, F. Morin, and J.L. Gauvain. Neural proba-
bilistic language models. Innovations in Machine Learning, pages 137–186, 2006.

[4] S. Bird, E. Loper, and E. Klein. Natural Language Processing with Python. O’Reilly
Media Inc., 2009.

[5] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[6] G.E.P. Box and D.R. Cox. An analysis of transformations. Journal of the Royal
Statistical Society B,, 26:211–252, 1964.

[7] L. Breiman. Random forests. Machine Learning, 45(5–32), 2001.

[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Chapman and Hall/CRC, 1984.

[9] N.V. Chawla, K.W. Bowyer, L.O Hall, and W.P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16,
2002.

[10] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 785–794, 2016.

[11] F. Chollet. Deep Learning with Python. Manning Publications, 2017.

[12] F. Chollet et al. Keras. https://keras.io, 2015.

179

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 180 — #198
�

�

�

�

�

�

180 BIBLIOGRAPHY

[13] A. Clerici, M. de Pra, M.C. Debernardi, and D. Tosi. Learning Python. Pixel.
EGEA, 2019.

[14] A.C. Courville, I. Goodfellow, and Y. Bengio. Deep Learning. MIT, 2017.

[15] H.T. Fanaee and J. Gama. Event labeling combining ensemble detectors and
background knowledge. J. Prog Artif Intell, 2:113–127, 2014.

[16] M.A. Fischler and R.C. Bolles. RANdom SAmple Consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 26(6):381–395, 1981.

[17] R. A. Fisher. On the mathematical foundations of theoretical statistics. Philos.
Trans. Roy. Soc. London Ser. A, 222(309-368), 1922.

[18] Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm.
In Machine Learning: Proceedings of the Thirteenth International Conference, pages
148–156. Morgan Kaufmann, 1996.

[19] J. Friedman, R. Tibshirani, and T. Hastie. The Elements of Statistical Learning.
Springer, 2008.

[20] J.H. Friedman. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29(5):1189–1232, 2001.

[21] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale senti-
ment classi- fication: A deep learning approach. In Proceedings of the 26th Inter-
national Conference on Machine Learning (ICML), pages 513–520, 2011.

[22] Z. Harris. Distributional structure. Word, 1954.

[23] G.E. Hinton, J.L. McClelland, and D.E. Rumelhart. Distributed representations.
In: Parallel distributed processing: Explorations in the microstructure of cognition,
volume Volume 1: Foundations. MIT Press, 1986.

[24] P.J. Huber. Robust Estimation of a Location Parameter. Ann. Math. Statist., 35
(1):73–101, 1964.

[25] O. Levy and Y. Goldberg. Dependency-based word embeddings. In Volume:
Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), 2014.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 181 — #199
�

�

�

�

�

�

BIBLIOGRAPHY 181

[26] S.M. Lundeber and Su-In Lee. A unified approach to interpreting model pre-
dictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017),
2017.

[27] M. Lutz. Learning Python. O’Reilly Media Inc., 2013.

[28] A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, and C. Potts. Learning
word vectors for sentiment analysis. Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics., 2011.

[29] C.D. Manning, P. Raghavan, and H. Schutze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[30] T. Mikolov and Q. Le. Distributed representations of sentences and documents.
In Proceedings of the 31st International Conference on Machine Learning, volume 32,
pages 1188–1196, 2014.

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. In ICLR Workshop, 2013.

[32] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. In Advances in
Neural Information Processing Systems, 2013.

[33] A.C. Muller and S. Guido. Introduction to Machine Learning with Python. O’Reilly
Media Inc, 2017.

[34] K. Murphy. Machine Learning: a Probabilistc Perspective. MIT Press, 2012.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[36] J. Pennington, R. Socher, and C.D. Manning. Glove: Global vectors for word
representation. 2014.

[37] M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[38] L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, and A. Gulin. Cat-
boost: unbiased boosting with categorical features. NeurIPS2018, 2018.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page 182 — #200
�

�

�

�

�

�

182 BIBLIOGRAPHY

[39] L.S. Shapley. A value for n-person games. Contributions to the Theory of Games, 2
(28):307–317., 1953.

[40] R Socher, C.L. Cliff, A.Y Ng, and C.D. Manning. Parsing natural scenes and
natural language with recursive neural networks. volume 2, 2011.

[41] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society B, 58(1):267–288, 1996.

[42] R. Tibshirani. The lasso problem and uniqueness. Electronic Journal of Statistics,
7:1456–1490, 2013.

[43] L.P.J. van der Maaten and G.E. Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9:2579–2605, 2008.

[44] J. Vanderplas. Python Data Science Handbook. O’Reilly Media Inc., 2016.

[45] I.K. Yeo and R.A. Johnson. A new family of power transformations to improve
normality or symmetry. Biometrika, 87(4):954–959, 2000.

[46] H. Zou and T. Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society B, 67:301–320, 2005.

[47] N. Zumel and J. Mount. Practical Data Science with R. Manning Publications,
2014.

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page viii — #8
�

�

�

�

�

�

�

�

“Giussani_AMLP” — 2020/1/30 — 9:59 — page viii — #8
�

�

�

�

�

�

Andrea Giussani

“	This book gives the fundamental
principles for developing Machine
Learning applications with Python”.

Massimo Natale, Lead Data Scientist at Generali Italic

Andrea Giussani is an Academic Fellow in Computer Science at Bocconi University.

He holds a PhD in Statistics, and he has published in several peer-reviewed journals,

including Journal of Applied Statistics and Statistics and Probability Letters.

A
PPLIE

D
 M

A
C

H
IN

E
 LE

A
R

N
IN

G
 W

IT
H

 PY
T

H
O

N

A
nd

rea G
iu

ssan
i

Mybook is the gateway to access accompaying resources
(both text and multimedia), the BookRoom, the EasyBook
app and your purchased books.

http//mybook.egeaonline.it

www.bupbooks.com

APPLIED MACHINE
LEARNING
WITH PYTHON

	APPLIED MACHINE LEARNING WITH PYTHON
	Contents
	List of Figures
	Preface
	Chapter 1. Introduction to Machine Learning
	1.1 A simple supervised model: Nearest Neighbor
	1.2 Preprocessing
	1.3 Methods for Dealing with Imbalanced Data
	1.4 Reducing Dimensionality: Principal Component Analysis

	Chapter 2. Linear Models for Machine Learning
	2.1 Linear Regression
	2.2 Shrinkage Methods
	2.3 Robust Regression
	2.4 Logistic Regression
	2.5 Linear Support Vector Machine
	2.6 Beyond Linearity: Kernelized Models

	Chapter 3. Beyond Linearity: Ensemble Methods for Machine Learning
	3.1 Introduction
	3.2 Ensemble Methods
	3.3 Random Forests
	3.4 Boosting Methods

	Chapter 4. An Introduction to Modern Machine Learning Techniques
	4.1 Introduction to Natural language Processing
	4.2 Introduction to Deep Learning

	Appendices
	Appendix A. A crash course in Python
	A.1 Building Blocks in Python
	A.2 Data Structure in Python
	A.3 Loops in Python
	A.4 Advanced Data Structure in Python
	A.5 Advanced Concepts on Functions
	A.6 Introduction to Object-Oriented Programming

	Appendix B. Mathematics behind the skip-gram model
	Index
	Bibliography
	Back Cover

